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DEPARTMENT OF THE ARMY 
HEADQUARTERS US ARMY AVIATION MATERIEL LABORATORIES 

FORT EUSTIS. VIRGINIA 23604 

This contract was  initiated to Investigate the feasibility of applying 
higher-harmonic blade pitch control solely at the blade root for the 
purpose of eliminating the transmission of helicopter rotor oscillatory 
shear forces  to the fuselage.    Numerical analyses were performed to 
estimate the pitch control inputs and the associated performance required 
for eliminating transmitted  (noncancelling) harmonic vertical root shears 
alone, harmonic inplane root shears alone,  and the principal vertical and 
inplane harmonic root shears simultaneously. 

For the UH-1A rotor system with an assumed ideal control system,  results 
indicate that,  except for the first-harmonic inplane shear, harmonic root 
pitch control can be applied to eliminate transmitted harmonic root shears. 
Elimination of the higher-harmonic shears does not appear to be feasible: 
they are relatively small  in magnitude and do not warrant the additional 
mechanical complexity.    Although the use of a single root pitch mode would 
be preferable  from a simplicity standpoint,  evidence suggests that dual 
pitch controls with differential pitching motions of Inboard and outboard 
blade sections are essential.    Higher harmonic pitch control is a promising 
means of vibration suppression.    However,  application of harmonic pitch 
control solely at  the blade root appears  to be stymied by  the following 
deficiencies: 

•  For the two-bladed  teetering rotor system considered,  the first- 
harmonic  Inplane shear is the largest transmitted harmonic root 
shear.     It cannot be eliminated by root pitch control. 

/ 

• Root pitch control requirements change appreciably with flight 
conditions. 

• In eliminating certain harmonic root shears, harmonic root pitch 
control inputs incite aerodynamic-inertial interactions, causing 
large blade motions and large pitch angle excursions. 

For these deficiencies, a form of dual pitch control with differential 
pitching motions of inboard and outboard blade sections is foreseen as a 
promising solution. 

A feasibility study of a rotor system with dual pitch controls is currently 
under way. This Initial feasibility study does not embody consideration of 
higher-harmonic pitch control. 
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SUMMARY 

A study was made of the possibility of using higher harmonic 
pitch-angle inputs to eliminate the transmission of oscillatory vertical 
and inplane forces from a helicopter rotor to its driving shaft.    The 
aerodynamic loads were computed by using a realistic model which 
represented the rotor blades by bound vorticity distributions and the 
wake by a mesh of segmented vortex filaments. 

The method which was developed computed the required pitch- 
angle inputs at the blade root which would eliminate the oscillatory 
vertical and inplane root shears.    The oscillatory lift and drag were 
not constrained to be zero at all radial stations, and the inertia forces 
associated with blade dynamic responses which also produced root 
shears were taken into account in the computations.    The computa- 
tional procedure which was developed is capable of treating either 
the two-bladed teetering rotor or articulated rotors. 

The computed results were based on a two-bladed teetering 
rotor which was approximately the same as that of the UH-1A config- 
uration except for the assumed differences in pitch control.    The 
required pitch angle inputs were determined for eliminating various 
combinations of harmonic root shears. 

Variations in the required pitch inputs were found for the 
various flight conditions analyzed.    For all flight conditions,  however, 
the results showed that most of the oscillatory vertical root shear could 
be eliminated with blade root pitch inputs at the second and fourth har- 
monics.    Root pitch control could be applied to eliminate all the har- 
monic transmitted shears except the first inplane harmonic.    The first 
harmonic root pitch control was unavailable because it was necessary 
for providing ordinary cyclic pitch control of the tip-path plane.    Of 
the transmitted inplane shears that could be eliminated, the largest 
could be eliminated with blade root pitch inputs at the third and seventh 
harmonics.    For all cases investigated,  the blade dynamics responses 
had an important effect on the required pitch inputs. 

The simultaneous application of higher even harmonic and 
higher odd harmonic pitch control affected the performance charac- 
teristics of the rotor from those of conventional control to a larger 
extent than the individual application of either higher even harmonic 
or higher odd harmonic pitch control. 

111 
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INTRODUCTION 

The reduction of high vibration levels of helicopters has been 
the object of rather intensive effort for many years.    The primary 
source of the objectionable vibrations appears to stem from the forces 
generated by the rotor which are transmitted directly to the drive shaft 
through the blade root fittings and rotor hub.    Many different methods 
have been advocated for reducing the vibratory shears which are trans- 
mitted in this manner.    Among these methods have been attempts to 
shift the natural bending frequencies of the rotor blades so as to reduce 
the amplification of the dynamic response in the bending modes,  and 
attempts to reduce the vibratory exciting forces (as well as to improve 
performance) by the application of second harmonic pitch control. 

Neither of the methods of attack mentioned above, or others, 
appeared to be entirely satisfactory.    Thus, a study was initiated at 
CAJL to investigate the possibility of reducing transmitted rotor shaking 
forces by the application of a more general type of blade pitch-angle 
control (Reference 1).    This study differed from preceding ones in 
that a more realistic model was used in computing the rotor aero- 
dynamic exciting forces.    In the first part of this study,  the required 
pitch angles were found which would eliminate the oscillatory lift 
loadings at all radial stations.   In the computations for this case, 
an ideal control system was assumed such that continuous radial 
and azimuthal variations in blade pitch angle would be possible.    The 
required pitch angles were computed to obtain a prescribed constant 
blade-lift distribution which did not vary with azimuth position.    This 
inverse problem was solved by an extension of a program developed 
for predicting the aerodynamic loads and dynamic response of rotor 
blades (Reference 2).    From the results,  it was concluded that the 
design of a pitch control system for the elimination of all harmonic 
vertical blade loadings would be difficult because the radial variations 
in the required pitch angles varied considerably with azimuth position, 
and the amplitudes and phase angles of the required inputs changed with 
flight condition. 

In the second part of the study,  a method was developed for 
computing the pitch-angle inputs at the blade root which were required 
to eliminate the oscillatory transmitted vertical root shears without 
requiring a radial variation in pitch inputs.    A series of computations 
was carried out for a two-bladed rotor approximately the same as 
that of the UH-1A configuration except for the assumed differences 
in pitch control.    It was found that all noncanceling vertical root 
shears from the second through the twelfth harmonic could be elim- 
inated with higher harmonic pitch-angle inputs introduced at the 
blade root.    Further,  the largest part of the oscillatory transmitted 
vertical root shears could be removed by using only second and 
fourth harmonic pitch-angle inputs. 
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These results gave definite encouragement to the possibility 
of obtaining significant reductions in the transmitted harmonic root 
shears by using blade root pitch inputs which could be introduced by 
a practical control system. 

This initial effort, as reported in Reference 1, was limited 
to the consideration of the lift or vertical shear loads transmitted to 
the fuselage. It is well known that vibratory drag loads generated in 
the rotor system are also responsible for serious fuselage vibrations, 
and it was recognized that further effort would be required to deter- 
mine the effect of blade pitch control on the drag or inplane shear 
loads as well. 

On the basis of the encouraging results obtained in Reference 1, 
it was deemed logical to continue the effort for evaluating the possible 
application of blade pitch inputs for the elimination of transmitted har- 
monic rotor loads,with emphasis on (1) the investigation of instabilities 
in the iterative solution which had been encountered in the first study, 
(2) study of transmitted inplane forces, and (3) estimating the effect 
of higher pitch-control inputs on performance. 

In the present report, the analytical method for determining 
the pitch-angle inputs that are necessary for eliminating oscillatory 
vertical and inplane root shears is described.    Part of this descrip- 
tion is a treatment of the iterative scheme of solution of the basic 
equations of motion,including the use of iteration factors and improved 
initial conditions to overcome the computational instabilities.    Results 
are presented for the extensive numerical computations carried out 
to eliminate the noncanceling vertical and inplane oscillatory shears 
in various harmonic combinations for three flight conditions of the 
UH-1A rotor configuration.    Included in these results is the effect 
of the resulting blade pitch-angle inputs on performance.    The basic 
aerodynamic analysis,  which differs only slightly from References 1 
and 2,  is presented for completeness in Appendix I. 
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METHOD FOR FINDING PITCH-ANGLE INPUTS 
TO ELIMINATE OSCILLATORY ROOT SHEARS 

In Reference 1, a computational procedure was developed for 
finding the required harmonic root pitch-control inputs to eliminate the 
transmitted harmonic vertical root shears.    The computational procedure 
has been extended such that the control inputs required to eliminate the 
transmitted harmonic inplane root shears can also be determined.    In 
both cases,  the blade dynamic responses which are excited by the residual 
harmonic airloads and affect the root shears are included in the analysis. 

Computations were made to determine the harmonic control 
inputs required to eliminate oscillatory root shears for a two-bladed 
teetering rotor configuration approximately the same as that of the 
UH-lA helicopter,  under the following assumptions: 

1. The flight condition is steady so that the blade dynamic 
responses can be assumed to-be periodic. 

2. The blade root shears due to combined aero- 
dynamic and inertia force loadings are to be 
zero at the prescribed harmonics. 

3. The tip-path plane is in a prescribed position. 

4. The blade dynamic responses can be described by: 

a. Three symmetric flapwise bending modes. 

b. Teetering motion and two antisymmetric 
flapwise bending modes. 

c. Two symmetric torsion modes. 

d. Two antisymmetric torsion modes (with 
the same frequencies as the symmetric 
modes). 

e. Two symmetric chordwise bending modes. 

£.      Two antisymmetric chordwise bending 
modes (with the same frequencies as the 
symmetric modes). 

5. Control can be applied by: 

a.     One symmetric and one antisymmetric pitch 
control mode,   each giving uniform feathering 
along the blade span. 



b.     One symmetric and one antisymmetric pitch- 
control mode,   each giving differential feathering 
of the inboard and outboard sections of the blade. 

When the second and all higher even harmonic root shears are prescribed 
to be zero,  the vertical root shear transmitted to ehe fuselage is a constant, 
independent of azimuth position.    The harmonic inplane shears are trans- 
mitted to the fuselage at harmonics one above and one below the harmonic 
inplane root shear so that,   when the third and all higher odd harmonic 
voot shears are prescribed to be zero,  the inplane shear transmitted to 
the fuselage consists n a constant and a second harmonic force. 

The treatment of the aerodynamics of the rotor-wake system 
was basically the same as that used in Reference 1.     Minor modifications 
of the aerodynamic analysis were made in conjunction with the inclusion 
of the inplane aerodynamic forces,   and the entire analysis is reviewed 
in Appendix I. 

ROTOR DYNAMIC RESPONSES 

The dynamic response of the rotor was described by the modes 
indicated schematically in Figure I,which are applicable to the case 
01 a two-bladed teetering configuration.    All of the modes can be handled 
simultaneously in the computer program which was developed in Refer- 
ence 1 and extended to include the inplane degrees of freedom herein. 
The computational procedure is also capable of treating the case of articu- 
lated rotors, but no computations were performed for this configuration. 

The vertical and inplane symmetric and antisymmetric modes 
were designated by even and odd subscripts,   respectively.    The vertical 
tip deflections due to bending in the first,  second,  and third symmetric 
flapwise bending modes were denoted by hj, h4  and hi; the inplane tip 
deflections due to bending in the first and second symmetric bending 
modes were denoted by ^2 and fy.   The tip deflections represent the 
generalized coordinates in the various modes.    The tip deflections h, , h3 
and hy were used as generalized coordinates for the teetering motion and 
the first and second antisymmetric flapwise bending modes,   respec- 
tively,   while the tip deflections H, and H} were used as generalized 
coordinates for the first and second antisymmetric chordwise bending 
modes,   respectively.    Since the deflections in the blade chordwise 
bending modes are assumed to be zero at the blade root,  the deflection 
shapes for each blade are the same for the symmetric and antisymmetric 
chordwise bending modes. 

A symmetric vertical rotor displacement mode hos and an 
antisymmetric inplane rotor displacement mode //ö/, are included in 
the analysis.    The former mode corresponds to vertical motion of the 
liaDping hinge,  and the latter mode corresponds to inplane motion of 
ir.c  lag hinge.   Both are produced by fuselage and hub motion. The h^ 
and  HM   modes are introduced because the sum of the generalized 



aerodynamic and inertia forces acting in these degrees of freedom is 
equal in magnitude to the transmitted shear.    The amplitudes of the 
h0J and H0A   motions are assumed to be zero in the analysis; i. e. ,  it 
is assumed that the h05 and HOA motions do not produce any blade 
plunging or inplane motions,  respectively. 

An antisymmetric blade vertical displacement mode hOA is 
also shown in Figure 1.    This mode has no physical significance in 
the case of a teetering rotor, and motions in this mode are set equal 
to zero in the calculations.   In the case of an articulated rotor blade 
with an offset flapping hinge,  this mode would correspond to a tilting 
of the shaft.    The generalized forces acting in the antisymmetric  h0A 
mode produce canceling vertical root shears, but such shears can 
transmit moments to the shaft only when offset hinges are used. 
The analysis provides for the computation of these moments.    Simi- 
larly,  displacements in the symmetric blade inplane displacement 
mode H0i  are assumed to be zero,and the generalized forces in this 
mode produce canceling inplane root shears. 

The generalized coordinates 0, , 0t , 09 , and 6+ used for the 
blade torsion modes are the angular deflections about the elastic axis 
at the blade tip.    Since the pitching of the blade root is described by 
the control modes,  the angular deflections in the blade torsion modes 
are assumed to be zero at the blade root.    As a result,  the deflection 
shapes for each blade are th? same for the symmetric and antisym- 
metric torsion modes.    The natural frequencies of the bending and 
torsion modes shown in Figure 1 are listed in Appendix II for the 
configuration studied. 

The computational model permits the use of two symmetric 
and two antisymmetric pitch-control modes.    Conventional collective 
pitch is the bteady component of the motion in the first symmetric 
control mode Ct ,  while conventional cyclic pitch is the first harmonic 
motion in the first antisymmetric control mode C,.    Higher harmonic 
motions can be introduced in both the C, and Ce modes in order to 
modify the root shears.    The second symmetric and second antisym- 
metric control modes C4 and <r, ,   shown schematically in Figure 1, 
are possible differential control motions in which the inner and outer 
sections of the blade pitch in opposite directions.    The mode shapes 
shown for Cj  and cV could be replaced by other radial variations within 
the framework of the analysis.    For example, a linear variation in 
pitch might be used which could be produced by a device introducing 
a moment at the blade tip. 

The spanwise variations of the amplitude in each mode arc- 
represented by dimensionless functions as 

fytrjfrtt)        = amplitude of motion in f**   mode 
at radial station r and af time t. 

1 



HARMONIC AND DISCRETE TIME TREATMENT OF VARIABLES 

The investigation has been limited to considering steady flight 
conditions for which the rotor loads,  rotor motions,and transmitted 
shears are assumed to be periodic.    In carrying out the aerodynamic 
computations,  including the effects of the wake vorticity distributions, 
it is convenient to utilize the values of the variables at discrete time 
increments similar to the treatment used in Reference 2.   As discussed 
in Appendix I,  the positions of the shed and trailing vortices in the wake 
are determined from uniform inflow theory for the given flight condition. 
When the values of /, , or   , äc- and h in Equation (42) of Appendix I are 
given at the -v^ blade segment positions in the rotor disc, the aero- 
dynamic problem is completely defined.    The solution of the aerodynamic 
problem gives the blade circulation, lift, and pitching moment at each of 
the blade segment positions.    Since the profile and induced drag loads 
are also determined at each of the blade segment positions, the variations 
in the aerodynamic loads are,  in effect,  given at discrete azimuth or 
time increments.    The transmitted shears and generalized forces acting 
in each of the flapwise bending, chordwise bending, and torsion modes 
at the discrete azimuth positions can be computed from the lift, drag, and 
moment distributions.   In computing the dynamic responses to periodic 
forces, it is more desirable to use a harmonic description of the vari- 
ables.   The time variation of the (f** generalized coordinate can be 
approximated by a finite Fourier series as follows: 

1i(*) - 11 {(** 9i) cos "* *(** fi) sü"**}' (1) 
nmO 

where 

2*   . r   '***\T-'] 
i^9i)'-^Zifih9^n*A 

4*/ 

A/4 

(2) 

(***>)• ££(fiU**»U'*)" n ■ 
<•/ 2 

The symbol (4»ft ) indicates the operation of multiplying (^)> , the value 
of the generalized coordinat es, at azimuth position P^^ZwiA-i)/fJA     by 
(2/MA) COS ify    and summing for /tt4 equally spaced azimutn positions. 
This is simply the coefficient of the n** harmonic cosine term.    Simi- 
larly, (Sfift)   is the coefficient of the **♦   harmonic sine term. 
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DISCUSSION OF EQUATIONS OF MOTION AND ANALYTICAL PROBLEM 

The equation of motion for each of the flapwise or chordwise 
linear deflection and torsion modes can be written in the general form 

hrtr k'**. E"*8^»Jc '^."„B*'^.*. t* ] (3) 

for the assumed complex perioalc variations in the generalized coor- 
dinates and in all the generalized forces acting on the blade.   In this 
expression, the ^f/3   are generalized mass coefficients,  the fyj.'* 
are gyroscopic coupling coefficients, the^.jj.'5    are generalized stiff- 
ness coefficients,  the    fify*  are centrifugal force coefficients, and 
the ??,?/-*'    are structural damping coefficients.    Definitions of these 
coefficients are given in Appendix II.    The quantities on the right-hand 
side are the.complex generalized aerodynamic forces acting in the 

?,** mode^. ; the generalized centrifugal forces arising from built-in 
twist and preconing ■£ ;  the complex noncanceling vertical root shear 
5V; the complex canceling vertical root shear 5^. ; the complex noncan- 
celing inplane root shear-3%/; and the complex canceling inplane root 
shear-4 .    The shears <5y > ^c   '&* > ~^e act only in the boa , he» , ^M , and 
Mas modes,  respectively, as indicated by the 4 functions.    All coeffi- 
cients and generalized forces represent values per blade. 

Complex vectors,  indicated by bars,  have been used in Equa- 
tion (3), since they are convenient in writing the conventional expression 
for structural damping.    The complex periodic variations of each>gener- 
alized coordinate (fa) are expressed in the form 

MA/2   t 1 
3 ZT  \{An 9i) ccs n? + (3n fr) sin n f i 

jult 

*■./■ H   \-{Bn ?J cosnt * {A„ fi) Jin n^\ , 
(4) 

where the complex coefficients have been defined in such a manner 
that the real part of Equation (4) is identical to Equation (1).    Similar 
expressions hold for the other complex periodic quantities (& , Z     , 
■>*> '* > 

Only the real part of Equation (3) is considered in the subse- 
quent discussion because it suffices to describe the real physical motion. 
After substituting expressions of the type shown in Equation (4), the 
real part of Equation (3) can be arranged in the form of a sum of 



I 
harmonic terms,  and th6 coefficient of each cosine and sine harmonic 
must vanish for the complete equation to be satisfied.    The require- 
ments on the coefficients of coi mj/ and sin nt in the equation for the 
^ **   mode are 

+S9rhos (ßnSj *-ifiihJß„Se ) + Sfi_,J-3n DN)+SUi„os (-8n Dc) 

-   (**%)• (6) 

In matrix form,   these equations and certain auxiliary constraint 
equations are shown in the form in which they appear in the computer 
program on pages 9 and 10. 

From the symmetry of the two-bladed teetering rotor,  it follows 
that the generalized forces acting in the flapwise and torsional symmetric 
modes can only be of even or zero harmonic order,  while those acting in 
the flapwise and torsional antisymmetric modes can only be of odd har- 
monic order.   As a result,   the response in the flapwise and torsional 
symmetric modes must be at zero or even harmonic orders, and the 
response in the flapwise and torsional antisymmetric modes must be at 
odd harmonic orders.    The same condition holds for the inplane modes; 
i. e. ,   the generalized forces acting in the chordwise symmetric modes 
can only be of even or zero harmonic order,while those acting in the 
chordwise antisymmetric modes can only be of odd harmonic order. 
The response in each of the various modes is indicated by the variables 
appearing on the left-hand side of Equations (7) and (8).    The fact that 
the responses in the various modes occur as described above does not 
mpan that the two sets of equations are decoupled,since coupling can 
occur among harmonic coefficients of all orders through the generalized 
aerodynamic forces.    For example,  the combination of even harmonic 
blade motion and the flow dissymmetry due to forward flight can produce 
odd harmonic generalized aerodynamic forces. 

The first four rows in Equation (7) represent the equilibrium 
of the nih harmonic cosine components of the generalized forces in the 
symmetric vertical deflection modes {hos , h2 , ^ ,   h& ).    The fifth and 
sixth rows represent the equilibrium of the cosine components of the 
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generalized moments in the symmetric torsion modes (6f-, &+) .    Simi- 
larly, the ninth to the fourteenth rows represent the equilibrium of the 
sine components of the generalized forces in the symmetric vertical 
modes and the generalized moments in the symmetric torsional modes. 
The seventeenth,   eighteenth,  and nineteenth rows represent the equilib- 
rium of the /7^ harmonic cosine components of the generalized forces 
in the symmetric inpiane modes, while the twentieth,   twenty-first 
and twenty-second rows represent the equilibrium of the sine compo- 
nents of the generalized forces in the symmetric inplane modes.    The 
choice of this representation was a logical extension of the represen- 
tation presented in Reference 1. 

Twenty-two variables have been listed in the column matrix 
on the left-hand side of Equation (7).    The deflections in the tios  and 
//^j modes are assumed to be zero,but the noncanceling vertical har- 
monic shear coefficients (A„S„) , (ßnSn ) and the canceling inplane 
harmonic shear coefficients?-^ ^.), fA,^,; which are associated 
with these modes are treated as variables in the problem.    The 
remaining variables are the cosine and sine components of the deflec- 
tions in the symmetric flapwise bending modes,   symmetric torsion 
modes,  symmetric control modes and symmetric chordwise bending 
modes.    No equations of motion are included for the equilibrium of the 
control modes since the characteristics of the control system have not 
been included in the study.    The seventh,   eighth,  fifteenth, and sixteenth 
rows of Equation (7) are four constraint equations which are added to 
the dynamic equations in order to make the number of equations equal 
to the number of luiknowns in the column matrix on the left-hand side. 
Since constraiat equations are included in the equation set for each 
harmonic,  ?. well-defined problem results for the complete system 
of equations having the same number of equations as unknowns. 

The implementation of a pitch control system for the elim- 
ination of root shears might be based on several different concepts. 
One such system might apply a higher harmonic pitch control schedule 
which would be selected in accordance with the flight condition (i. e. , 
flight velocity,   votor speed,   etc.).    Solutions based on the method given 
in this section   ndicate the pitch control schedules which should be used. 
In another posiible system,  the output of a sensor measuring the blade 
root shears night be used as a feedback in a pitch-control servo.    The 
application of such a servo system would be dependent upon obtaining a 
design in which the dynamic responses of the coupled rotor - servo 
system would be stable.    A more extensive computer program would 
be required to study this problem,which would include the dynamics 
of both the rotor and servo systems. 

A general element of the 22-by-22 dynamic response matrix 
on the left-hand side of Equation (7) is denoted by D(ItJ, n),  where 
I and / denote the row and column,   respectively, and n the applicable 
harmonic order.    The [0] matrix has been partitioned,and the forms of 
typical elements in the submatrices are shown.    The specific form of 
the 22-by-22 matrix was obtained by bordering on the l6-by-l6 matrix 
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oi R e f e r e n c e I . T h e e l e m e n t s of t h e s u b m a t r i c e s [£>] r e f e r r i n g to t h e 
i n p l a n e d e g r e e s of f r e e d o m c a n be e x p r e s s e d in t h e s a m e g e n e r a l f o r m 
a s t h o s e f o r t h e f l a p w i s e and t o r s i o n a l d e g r e e s of f r e e d o m , and t h e y 
w o u l d b e c o m e p a r t of e i t h e r p r i n c i p a l s u b m a t r i x by s u i t a b l e r e a r r a n g e -
m e n t of t h e e q u a t i o n s . 

T h e n** h a r m o n i c g e n e r a l i z e d a e r o d y n a m i c f o r c e s a c t i n g in 
t h e s y m m e t r i c m o d e s a r e l i s t e d in t h e f i r s t c o l u m n m a t r i x on t h e 
r i g h t - h a n d s i d e of E q u a t i o n (7). In t h e n e x t c o l u m n m a t r i x , a l i s t 
i s g i v e n of t h e g e n e r a l i z e d c e n t r i f u g a l f o r c e s (z%(n)) a s s o c i a t e d wi th 
p r e c o n i n g a n d b u i l t - i n t w i s t . T h e s e a r e s t e a d y f o r c e s , a n d j g 
z e r o u n l e s s n = 0. T h e l a s t c o l u m n m a t r i x in t h e r i g h t - h a n d ' s i d e of 
E q u a t i o n (7) i s u s e d in t h e c o m p u t e r p r o g r a m to p r e s c r i b e t h e v a l u e s 
o: f o u r v a r i a b l e s ( f o r n - O, only two of t h e c o s i n e c o e f f i c i e n t s n e e d 
be p r e s c r i b e d s i n c e a l l t h e s i n e c o e f f i c i e n t s a r e z e r o ) . 

T w o e x a m p l e s a r e g i v e n be low in o r d e r to c l a r i f y t h e m e a n i n g 
of t h e n o t a t i o n u s e d in t h e c o n s t r a i n t e q u a t i o n s . If i t w e r e d e s i r e d to 
u s e t h e s e v e n t h e q u a t i o n to put a c o n s t r a i n t on (AnS„) (i. e. , t h e nih 

h a r m o n i c c o s i n e c o e f f i c i e n t of n o n c a n c e l i n g r o o t s h e a r ) , a s e t t i n g 

JP(n.I-7)= / ( 9 ) 

w o u l d be u s e d in t h e i n p u t s to t h e c o m p u t e r p r o g r a m . T h i s m e a n s t h e 
only e l e m e n t of t h e \j>~\ m a t r i x in t h e s e v e n t h r o w (J-7 ) w o u l d be in 
t h e f i r s t c o l u m n ( J = / ) , r e s u l t i n g in t h e e q u a t i o n 

-jf (A„S„) = YP(n.7). (10) 

1 h u s , f o r JP(n,7)- / , t h e i npu t YP(n.7) wou ld be s e t equa l to z e r o if 
a s o l u t i o n w e r e d e s i r e d wi th t h e nth h a r m o n i c n o n c a n c e l i n g v e r t i c a l 
r o o t s h e a r e q u a l to z e r o . 

If i t w e r e d e s i r e d to u s e t h e s e v e n t h e q u a t i o n to put a c o n s t r a i n t 
on (-AnPn) (i. e . , t h e nu h a r m o n i c c o s i n e c o e f f i c i e n t of n o n c a n c e l i n g 
e n p l a n e s h e a r ) , a s e t t i n g 

JP(n,I-7) = f7 (11) 

w o u l d be u s e d in t h e i n p u t s to t h e c o m p u t e r p r o g r a m . T h i s m e a n s t h a t 
t h e only e l e m e n t of t h e [£>] m a t r i x in t h e s e v e n t h r o w (1-7) wou ld be in 
t h e s e v e n t e e n t h c o l u m n (s*/7j , r e s u l t i n g in t he e q u a t i o n 

2 = 7 p YP(».7), ( 1 2 ) 

and f o r JP(n,7)= 17 , t h e i npu t YP(rt,7) wou ld be s e t equa l to z e r o if a 
s o l u t i o n w e r e d e s i r e d w i th t h e nth h a r m o n i c n o n c a n c e l i n g i n p l a n e s h e a r 
e q u a l to z e r o . 
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Except for the latter example,  the preceding discussion has 
been given relative to the even harmonic equations» but analogous con- 
siderations hold for the odd harmonic eo.uations.    Although the expres- 
sions for the matrix elements appear to be the same in Equations (7) 
and (8), different ^jr,.   ,%$.   ,\f.   , Wfcf/    and 6f. >/   coefficients 
are involved because symmetric and antisymmetric modes occur in 
the two cases,  respectively.    For n = 0,  there are no sine component 
generalized forces or generalized coordinates,and somewhat different 
treatment is required.    It was desired to use matrices of the same 
order for all harmonics in the computer program for convenience. 
The H = &   case was brought into this framework by retaining only 
diagonal terms in the ninth to sixteenth and twentieth to twenty-second 
rows of the matrix and setting the right-hand side of the corresponding 
equations equal to zero.    Thus, the same matrix inversion program 
could be used for /?• 0 a.a for the other harmonics. 

The set of equations of motion and constraint equations for 
even or odd harmonics can be written symbolically in the form 

■, 

[/?(i. T. n )Jx(n. 7)] - -, [e U i)] +jp \z(ni T)] +jp [yPC«. -T)] ,       (1 3) 

where appropriate symbols have been introduced for the column matrices 
in Equations (7) and (8).    The [xtn.jf] matrix is composed of variables 
corresponding to symmetric modes for zero and even harmonics and is 
composed of variables corresponding to antisymmetric modes for odd 
harmonics.    The n     harmonic generalized aerodynamic forces are 
functions of the lift,   moment,and drag on the blade which depend on 
all the harmonics of the motion as mentioned previously.    That is, 

[Q(n,j]\=   [f[(A0ht),   ■  ■ ■   {A0H4),(A,h,),   ■ ■ ■ (4tHj); 

(3,ht).  ■       (0, »,);■'■ } (AUJ,M). ■ ■ ■ (Au"*)]]-      (i4) 

An explicit expression for the generalized forces in the form of 
Equation (14) is not available, but such a relationship can be obtained from 
the solution of the aerodynamic problem as discussed in Appendix I.    For 
given harmonic coefficients,  the azimuthal variations of the generalized 
coordinates can be computed using Equation (1).    The input variables &., 
<x    and/? in Equation (34),  Appendix I,  can then be expressed in terms 
of the generalized coordinates for blade motion by referring to Figures 2 
and 3, again making small-angle approximations.    The geometric angle 
of attack at each blade segment azimuthal position k relative to the local 
velocity is 

<t. 
9k 

{*,*Zferce*Zf.r*rl (15) 
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where 9t is the built-in twist and the control modes are as shown in 
Figure 1.    The relative angular velocity due to the motion of the 
blade is 

ifc ■ [|>,r i. - r V'+n C* ^h'it))K-       
(16' 

The last term is due to the small component of the shaft angular velocity 
along the blade axis and was neglected in the computations.    The com- 
ponent of velocity normal to V,   and the blade axis is 

+■ rhshs^z^r^-^z\cr\K (17) 

where e is the distance between the midchord and the elastic axis and 
e0  is the distance between the midchord and the pitch axis (Appendix II). 
The summations in Equations (15),   (l6),and (17) are over all the sym- 
metric and antisymmetric modes of bending, torsion,  and control motion. 

Once the ^gk6  , ^s*5> and   "K* have been determined.  Equa- 
tion (41),  Appendix I,  can be solved for the bound vortices and the 
corresponding Glauert coefficients at all blade segment positions in 
the rotor disc.    The Hit (I),  pitching moment (m^and drag loadings^) 
can be computed by Equations (48),   (49)i and (52),   respectively,  of 
Appendix I.    The generalized forces in each of the vertical,  torsion 
and chordwise displacement modes can be determined from the relations 

Kl* ° /v^V^ (18) 

(<r0i)d   - y^M-cfrU^r)]^. (r)^, (19) 
and 

fei*  =  -f^4(^^(r)dr. (20) 
where the subscript 4 refers to the indicated quantities at azimuth 
angle >^.    The harmonic analysis of the results obtained from Equa- 
tions (18),   (19), and (20) is the final step in relating the harmonic 
coefficients of the generalized aerodynamic forces and the harmonic 
coefficients of the generalized coordinates of the blade motions as 
indicated in Equation (14). 

A schematic diagram of the analytical problem which must 
be solved to evaluate the pitch-angle inputs necessary to eliminate 
oscillatory root shears is shown in Figure 4.    The diagram indicates 
the relationships among the various parts of the problem in the approach 
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which has been discussed.    The overall diagram has been divided into 
two boxes indicated by the dashed lines -- one showing the solution of 
the aerodynamics of the rotor-wake systems,  and the other showing 
the solution for the blade dynamic response, required pitch angles and 
residual root shears.    Again,  it is pointed out that the aerodynamic 
part of the problem is treated by  ..sing the values of the variables at 
discrete time or azimuth-angle i*» T « nents,   while the solutions for the 
dynamic responses and shears a   f created in terms of their harmonic 
coefficients. 

ITERATIVE SCHEME OF SOLUTION FOR HARMONIC MOTIONS AND 
ROOT SHEARS  

It is evident from the schematic diagram shown in Figure 4 
that the dependencies of the aerodynamic loadings on the dynamic blade 
responses are very involved.    The loads for specified input motions are 
obtained only after an iterative solution for the bound vortices as dis- 
cussed in Appendix I.    Consequently,  a direct solution for the harmonic 
blade motions and root shears due to the aerodynamic loadings cannot be 
carried out,  and an iterative scheme of solution was adopted for their 
determination as well. 

In discussing this iterative scheme of solution,  superscripts 
are used to denote the values of the variables in a particular iteration. 
Equation (13) can then be written as 

where [X    (rt,j)j is the {    approximation for the column matrix of the 
generalized coordinates, [(?""'V«,J)]   is the column matrix of generalized 
aerodynamic forces based on the preceding approximation for the column 
matrix of generalized coordinates, and £rt)[6-(V.r)]   is the increment in 
the column matrix of generalized forces from the (Y-Zj^to the i** 
approximation.    That is, 

A<*>[(r(r.I)] - [^(n,!)] - [V'-V/)]. (22) 

No superscripts are shown for the [D] , [l] , and [V^J matrices because 
they remain constant in the iterative solution. 

As a reminder that the [G-fn,!)] are complicated functions of 
the lift,  drag,and pitching moments on the blades, which,  in turn, 
depend upon all harmonics of the generalized coordinates,  the  (*-f)t'> 

approximation can be written in the sense of Equation (14) as 

e«-»**,!) {x^O.-   .X(i-')(,2.Z2)j]. (23) 
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The most direct iterative procedure would be to assume t'  [tf] to 
be zero in computinc the i** approximation for the column matrix of gener- 
alized coordinates, \KM\ ,  and to use these coordinates to compute the 
cM approximation for the generalized aerodynamic forces, [tf   J ; these, 
in turn,  would be used to compute  [/C   *  ] neglecting Afe*"[6} ,  etc. 
Unfortunately,  as Equation (21) stands,  the [/?] matrix becomes singular 
when constraints are placed upon the various harmonics in order to 
control or suppress the transmitted vertical or inplane shears.    This 
occurs because the coupling among many of the modes is aerodynamic 
in nature,  but not inertial or elastic,  so that this coupling appears on 
the right-hand side of the equations but not on the left-hand side in [0], 

Coupling among the modes can be achieved on the left-hand side 
of the equations together with an expected improvement in the rate of 
convergence by estimating the increments in the generalized aerodynamic 
forces from iteration to iteration.    A relatively simple estimate of A^'fo] 
can be made based on the assumption that the changes in the aerodynamic 
lifts,   drags,and pitching moments from one iteration to the next are linear 
functions of the corresponding changes in the harmonic coefficients of 
the blade motions.    Accordingly, 4'"[6-] is approximated by an expression 
of the following form: 

<(*> 
n (rfn.I^'-^U.J.r,).   X(ti(n,d-{*(*',\n.J)\,        (24) 

where [/f] is a square matrix depending upon harmonic number n.    This 
approximation to A    \G] neglects the interharmonic coupling that is 
present [see Equation (23)] but should provide an estimate of the prin- 
cipal coupling in the "M harmonic.    Expressions for the elements of 
[£],  which are based upon quasi-steady aerodynamics,  are presented 
in Appendix III. 

After substituting Equation (24) into Equation (21),   the following 
equation results: 

where 

[F(r.J.n)][x(t>{n.J)\ -[/"(„./)]. (25) 

(26) 

W'V/7, Jj]-" ~,[^Jj] 4^.^^ 

Equation (25) is solved at each harmonic n by finding IV   j, the 
matrix inverse of[/c'j.    The inverse exists now because thef^"] matrix 
has been so constructed that,   when added tof/?],   the total [F] is regular. 
Therefore,   the solution is 

f.'-w-H f'd.J.n) YU\n.I) (28) 
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Once theL^^J matrices have been determined,  the next approxi- 
mation for the generalized aerodynamic forces can be computed by per- 
forming the operations indicated by Equation (23).    The entire process 
can then be continued until convergence is achieved. 

Unfortunately, the initial investigation of transmitted shear 
suppression reported in Reference 1 showed that the above-described 
iterative scheme did not always converge.    When it did converge,  the 
rate of convergence was oft*n very slow.    Convergence was obtained 
in one case (Run B-6 of Refer ence 1) by examining a nonconvergent 
run and adjusting certain elements in [f j accordingly.   In that case, 
as well as others, it was observed that some of the modes have natural 
frequencies that are very close to the aerodynamic exciting forces which 
occur at harmonics of the blade rotational frequency (see Appendix II). 
It was also found that the iteration would converge when the torsion modes 
were ignored but would diverge when these modes were introduced. 

Consequently,  the above iterative method of solution was closely 
scrutinized from several points of view.    Attempts were made to develop 
general criteria which would insure convergence in advance.    These 
attempts were unsuccessful due,  in large part, to the complexity of the 
aerodynamic, inertial,a.nd elastic interactions as expressed,  say,  by 
the operations implied in Equation (23). 

The above-mentioned closeness of some of the natural mode 
frequencies to those of the exciting forces led to examination of the 
magnitudes of the determinants of the [f] matrices.    These varied 
greatly in magnitude; at some harmonics,   they were as large as 10"' 
but at others were as small as 10"^.    Surprisingly, the third harmonic, 
which was the smallest, did not differ at all between a rapidly conver- 
gent iteration and a divergent one.    An increase of about 4 percent, 
from 5. 14X1 to 5. 33/1,  in the natural frequency of the first symmetric 
and antisymmetric torsion modes increased the magnitude of the 
determinants of the fifth and lower-order harmonics by as much as 
39 percent on the one hand but decreased the magnitude of the deter- 
minants of the sixth and higher-order harmonics by as much as 33 
percent on the othur.   A substantial improvement was gained,  though, 
by increasing the frequencies of the same modes to 25. Oil; i. e., well 
beyond the twelfth harmonic.    The magnitudes of the smallest deter- 
minants increased in this case by factors of over 10^.    It was concluded 
that nothing practically useful could be done in the way of small fre- 
quency adjustments to avoid resonance. 

A series of numerical experiments with the use of "iteration 
factors" or "gain factors" showed sufficient promise that this approach 
was selected to provide convergent iterations.   In addition,  a method 
for determining improved initial conditions for the iteration was devel- 
oped.    These two steps, which are described below, permitted all cases 
to be iterated successfully. 
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Iteration factors were applied to the iterative scheme in two 
ways; first,  in the computation of the generalized aerodynamic forces 
[£] and,  second,  in the computation of the generalized coordinates [xj . 
First,  Equation (23) for the generalized forces can be rewritten as 

[<;"-'V^)]. [f-f^Djc""^.!)] 

■[i*(l}][f{x('n(0./). • ■  ■. X(d-f) il2.2Z)]\.        (29) 

where [j^]  is a column matrix of iteration factors that differ for each 
mode but are independent of n,  and [f-§s J is a column matrix whose 
elements are one minus the iteration factors.    If the elements of [^] 
are all unity.  Equation (29) reduces to Equation (23).    In the limit 
when a solution is achieved, [/"J   becomes equal to  [G<t*)] and Equa- 
tion (23) is also recovered.    When Equation (29) is substituted on the 
right-hand side of Equation (27),  it becomes effectively an additional 
quasi-steady aerodynamic term which can be determined empirically 
from observation of the trend of successive iterations.    Secondly, 
Equation (28) can be rewritten in a similar way as 

[>W;]. [/-£(^]|V'-'W)] 

*[§xU)\[f"U,ln)][y(*Hn.I)]' (30) 

where [&] is a column matrix of iteration factors that differ for each 
mode but are independent of ",  and ['-£*] is a column matrix whose 
elements are one minus the iteration factors.    Again,  if the elements 
of [?jr] are all unity,   Equation (30) reduces to Equation (28) and,in the 
limit when a solution is achieved, [/"'JIV'J    becomes equal to  [xf*j 
and Equation (28) is recovered. 

Figure 5 is a schematic diagram of the complete computational 
procedure showing the solution for the harmonic motions,  required pitch 
angles, and residual root shears.    The overall process is repeated until 
the percentage variations in the generalized coordinates from one overall 
iteration to the next are below prescribed values. 

The use of the iteration factors was implemented by adapting 
the computer program to run a prescribed number of iterations with 
a given set of iteration factors and then to stop with all the results 
saved on tape.    This permits resumption of the iteration,  starting 
with the saved results but a different set of iteration factors.    Further- 
more,  the results of the converged solutions can be saved from one 
case and used as initial conditions in subsequent cases,   thus providing 
a significant improvement in initial conditions for the iteration of case» 
with higher harmonic shear suppression. 

In Appendix IV,examination is made of the actual procedures 
that were used in obtaining solutions for the various cases at one flight 
condition. 
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RESULTS OF COMPUTATIONS FOR PITCH-ANGLE INPUTS REQUIRED 
TO ELIMINATE NONCANCELING OSCILLATORY ROOT SHEARS 

SCOPE OF NUMERICAL ANALYSIS 

Computations to eliminate noncanceling vertical and/or inplane 
root shears were performed for rotor configurations similar to that of 
the UH-1A helicopter corresponding to Flight Conditions DN65A,  DN66A 
and DN67A of Reference 6.    In all computations,  the flexural motions 
of the blade were represented by the first two symmetric and the first 
two antisymmetric bending modes,  and the first two torsional modes. 
Pitch deflections were represented by the first symmetric and the first 
antisymmetric pitch modes (^ and£) ), while deflections in the differ- 
ential pitch-control modes {Cj and €+ ) were specified to be zero. 

The deflections in the differential pitch-control modes were 
set equal to zero by the application of two of the four constraint equa- 
tions for each harmonic number /? [see Equations (7) and (8)].    At 
n = 0,  since the sine coefficients are zero, the one remaining con- 
straint equation was used to prescribe the desired thrust load per 
blade (a value of 3200 pounds was used in all computations).    At n = 1, 
the two remaining prescribed variables are the cosine and sine com- 
ponents of the teetering motion which were used to establish the desired 
tip-path-plane position.    For n*X,  the constraints are that either the 
harmonic coefficients of the root shears or the harmonic coefficients 
of the first control mode are to be zero.   In particular,  at the even 
harmonics. 

*   n = 2,4,6,8, 10, 12 
(S„S„)   = o 

or 
(A„Cz)   = O 
(3„Ct) ' O 

and at the odd harmonics, 
(-*„0*) - o 

For rotor configurations corresponding to Flight Conditions 
DN65A {/<= 0.076) and DN67A {/u= 0. 259),  pitch-control inputs and 
root shears were computed for conventional control and for five 
other configurations for which various harmonic noncanceling root 
shears were prescribed to be zero.    For the rotor configuration 
corresponding to Flight Condition DN66A (/i.= 0. 215),  data were 
computed for conventional control and one other configuration for 
which various harmonic noncanceling root shears were prescribed 
to be zero.    A listing of pertinent flight condition parameters is given 
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in Table I,while a listing of the various configurations for which 
numerical analyses were performed is given in Table II, which also 
lists the rotor performance data for the cases analyzed.    Listings 
of the harmonic root shears and the required rotor blade pitch angles 
for each of the cases analyzed are given in Tables III through VIII. 

RESULTS OF NUMERICAL ANALYSIS -- FLIGHT CONDITION DN67A, 
/<= 0.259  

The vertical and inplane harmonic root shears for all cases 
investigated for Flight Condition DN67A are listed in Table III.    Table IV 
lists the corresponding data on the harmonic pitch-angle inputs required 
to eliminate noncanceling vertical and iaplane root shears along with the 
conventional control pitch schedule.    Comparisons of the azimuthal varia- 
tions of the noncanceling vertical root shears,   collective pitch-control 
schedules,  noncanceling inplane shears,and cyclic pitch-control schedules 
are shown in Figures 6,   7,  8,and 9,   respectively. 

The largest transmitted vertical harmonic shears for this flight 
condition occur at the second and fourth harmonics (Figure 6).    Thus, 
the application of second and fourth harmonic pitch control eliminates 
the principal part of the oscillatory vertical root shear.    When higher 
harmonic pitch control is applied at /? = 2,  4,   6,   8,   10/and 12,  a con- 
stant value of AfiS/t = 3200 is maintained throughout the azimuth (not 
shown in Figure 6 for clarity).    The pitch-angle requirements for elim- 
inating the second and fourth harmonic vertical root shears remain 
approximately the same whether or not the noncanceling vertical shears 
for the sixth through twelfth harmonics are eliminated.    Comparatively 
large collective pitch inputs are required through the tenth harmonic 
to eliminate the vertical root shears,  while the twelfth harmonic vertical 
shear could be eliminated by comparatively small pitch inputs.    The 
presence of the comparatively large pitch inputs at the harmonics greater 
than the fourth yields a somewhat irregular collective pitch schedule in 
comparison to that required for eliminating only the second and fourth 
harmonic vertical shears as shown in Figure 7.    The pitch-control 
schedule for eliminating the second and fourth harmonic vertical shears 
is approximately the same as that presented in Reference 1 (where 
the torsional responses were neglected), while that for eliminating 
all noncanceling vertical shears varies from that of Reference 1 
principally in the sixth and tenth harmonics.    The primary reason 
for the difference in the results is believed to stem from the inclusion 
of the torsional degrees of freedom in the analysis conducted herein 
rather than from the inclusion of the inplane degrees of freedom.   In 
Reference 1,  it was found that the inclusion of the torsional modes 
effected only small changes in the harmonic root shears and pitch 
schedule for conventional control.    Quite likely,  a similar result 
would have been obtained herein,since the dynamic response in the 
torsional modes was comparatively small for conventional control. 
When higher harmonic pitch-control inputs are applied,  the dynamic 
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response in the torsional modes increases significantly,  and the 
required pitch-control inputs must be correspondingly altered to 
compensate for the extraneous angle-of-attack changes effected by 
the response in the torsional modes.    Figures 10 and 11 show com- 
parisons of the tip responses in the first antisymmetric and sym- 
metric torsion modes, respectively, ior conventional control and 
several other higher pitch-control configurations, and the influ- 
ence of the higher pitch-control inputs on the torsional response is 
quite evident. 

As had been found in Reference 1,  the requirement for the 
comparatively large higher harmonic pitch inputs to eliminate com- 
paratively small harmonic vertical shears stems from the effect of 
the dynamic response of the rotor.    When higher harmonic pitch con- 
trol was applied a.t/7>Z, it was found that,  for most of the higher 
harmonics,   the contribution of the aerodynamic forces to the root 
shears increased considerably.    Thus,  a compensating increase in 
the inertia forces was required to render the resultant shear zero. 
For the second harmonic pitch-control inputs, the contribution of the 
aerodynamic forces to the vertical root shear decreased to about one- 
half its value for conventional control uuch that a comparatively small 
second harmonic pitch-control input was required to eliminate the 
largest of the transmitted vertical shears.    The desirability of elim- 
inating transmitted vertical shears above the second harmonic by 
means of higher harmonic pitch control at the blade root is thus 
questionable.   As suggested in Reference 1, the situation might be 
improved by the application of a different control mode.such as differ- 
ential rotation of the inner and outer sections of the blade, which might 
change the relative magnitudes of the aerodynamic and inertia root 
shears. 

The pitch-control schedules required to eliminate the trans- 
mitted inplane root shears are also listed in Table IV, and the corre- 
sponding vertical and inplane harmonic root shears are listed in Table 
III.    Azimuthal variations of the noncanceling inplane root shears are 
shown in Figure 8.    Root pitch control can be applied to eliminate all 
the harmonic transmitted shears except the first inplane harmonic. 
The first harmonic root pitch control is unavailable because it is 
necessary for providing ordinary cyclic pitch control of the tip-path 
plane.    Of the transmitted inplane shears that can be eliminated,   the 
largest occur at the third and seventh harmonics.    The magnitudes 
of the third and seventh harmonic inplane shears are about equal, 
and the seventh harmonic inplane shear is larger than the fifth,  prob- 
ably because of the proximity of the frequency of the second chordwise 
bending mode to the seventh harmonic of the rotor speed.    As seen in 
Figure 9, the third and seventh harmonic pitch-control schedules were 
relatively unaffected when fifth, ninth,  and eleventh harmonic pitch 
control were applied to eliminate the corresponding harmonic inplane 
root shears.    The third harmonic pitch-control input is significantly 
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greater than those for the higher harmonics,  and those of the ninth 
and eleventh harmonics are quite small.    The conventional cyclic 
pitch-control schedule is also practically unaffected by the appli- 
cation of higher odd harmonic pitch-control inputs.    As had been 
found in the case of the vertical shears for even harmonics,  the 
application of higher harmonic pitch-control inputs leads to an 
increase in the contribution of the aerodynamic forces to the root 
shear for most of the odd harmonics; again,  a compensating increase 
in the inertia forces is required to render the transmitted inplane 
forces zero. 

The application of higher even harmonic puch-controi inputs 
to eliminate transmitted oscillatory vertical root shears also effects 
changes in the magnitude of the harmonic components of the inplane 
shears.    The converse is also true; that is,  the application of higher 
odd harmonic pitch-control inputs to eliminate transmitted oscillatory 
inplane root shears effects changes in the magnitude of the harmonic 
components of the vertical root shears.    Some of these changes in 
magnitude of the root shears were quite significant.    For example, 
in Table III, it is found that the seventh harmonic of the inplane shear 
for conventional control has a value of 33. 0 pounds.    When second and 
fourth harmonic pitch-control inputs are used to eliminate the second 
and fourth harmonics of the vertical shear, the seventh harmonic 
inplane shear increases in magnitude to a value of approximately 
160 pounds.   If higher harmonic pitch inputs are applied at all even 
harmonics from n = 2 to n = IZ to render the total vertical shear 
constant throughout the azimuth, the value of the seventh harmonic 
inplane shear increases further to a value of approximately 485 
pounds.    The increase was noted to occur principally in the inertia 
forces.    The azimuthal variations of the inplane shear for these two 
conditions are shown in Figure 8, and it is seen that the seventh har- 
monic of the inplane shear has a magnitude of approximately one-third 
that of the first harmonic (which is transmitted to the drive shaft as 
a steady component and at 2/rev) when higher harmonic pitch inputs 
are applied at all even harmonics from /> = 2to /r = 12.    The penalty 
in applying pitch control at harmonics above n = 2, is thus reflected 
in the root shears not only by significant increases in the transmitted 
aerodynamic forces but also by significant increases in the transmitted 
inertia forces. 

When odd harmonic pitch control was applied at n = 3 and 7, 
the fourth harmonic vertical shear increased from 57. 3 pounds to 
114. 5 pounds» while the second harmonic vertical shear decreased 
from 250 pounds to 184 pounds.    The changes in all other noncanceling 
vertical shears were less pronounced, and the application of higher 
harmonic pitch control at all odd harmonics from i? = 3 through /? = 11 
did not effect further significant changes in the noncanceling vertical 
shears (see Figure 6). 
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When higher harmonic pitch-control inputs were applied at 
n = 2,   3,   4,and 7 to eliminate the largest noncanceling vertical and 
inplane shears simultaneously,  the magnitudes of the required har- 
monic collective pitch control inputs at n = 2 and 4 were found to be 
larger than those for the case where the noncanceling vertical shears 
were eliminated only at * = 2 and 4 (see Figure 7).    In particular, 
the requirement for the amplitude of the fourth harmonic pitch-control 
input increased from 0. 7 degree to 1, 29 degrees.    The harmonic cyclic 
pitch-control input at n = 3 was somewhat less than that for the case 
where the noncanceling inplane shears were eliminated only at /? = 3 
and 7,  while the harmonic cyclic pitch-control input at s? = 7 increased 
significantly from 0. 23 degree to 1. 36 degrees,  leading to the rather 
irregular cyclic pitch-control schedule shown in Figure 9.    These 
results are not surprising in view of the preceding discussion with 
regard to the effect of higher harmonic pitch-control input on the 
generalized aerodynamic forces and root shears.    For example, when 
higher harmonic pitch control was applied at * * 2 and 4,  tfte magni- 
tude of the inplane root shear at the seventh harmonic increased from 
a conventional-control value of 33 pounds to a value of 160 pounds. 
Also, when higher harmonic pitch control wa« applied at.* ■ 3 and 7, the 
magnitude of the vertical root shear at the fourth harmonic increased 
from a conventional-control value of 57 pounds to a value of 115 pounds. 
The cited increase in the inplane shear was due primarily to an increase 
in the inertia forces associated with the increased response in the second 
chordwise bending mode,  while the cited increase in the vertical shear 
at /? = 4 was due primarily to an increase in the generalized aerodynamic 
forces. 

COMPARISON OF RESULTS -- FUGHT CONDITIONS DN67A, DN66A. 
AND DNfcSA " 

In the preceding section,  a detailed discussion was presented 
of the results of the computations to eliminate noncanceling root shears 
for Flight Condition DN67A,for which the advance ratio At = 0. 259.    The 
scope of the computations for Flight Condition ON65Alfor which M = 0. 076, 
was the same as that of Flight Condition DN67A.    For Flight Condition 
DN66A,  for which M = 0. 215,  only two cases were investigated; namely, 
that of conventional control and the condition in which both the two largest 
vertical and the two largest inplane transmitted shears were eliminated 
simultaneously.    The rotor rotational speed was the same for all flight 
conditions. 

A listing of the harmonic root shears for all cases investigated 
for Flight Condition DN65A is given in Table V,   while Table VI lists the 
corresponding required pitch angles.    The harmonic root shears for 
both cases investigated for Flight Condition DN66A are listed in Table 
VII,  and Table VIII lists the corresponding required pitch angles.    Com- 
parisons of the azimuthal variations of the noncanceling vertical root 
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shears,   collective pitch-control schedules,   noncanceling inplane shears, 
and cyclic pitch-control schedules are shown in Figures 12,   13,   14 and 
15,  respectively,   for >u= 0.076.    In the same order,  comparisons of 
the data for /u - 0. 21 5 are shown in Figures 16 through 19. 

Comparison of the collective pitch-angle inputs for Flight 
Conditions DN65A (>< = 0.076) and DN67A (A= 0. 259), for the cases in 
which the second and fourth vertical harmonic shears were eliminated, 
shows a decrease in the pitch-angle requirement at/? = 2 as the advance 
ratio decreases but an increase in the fourth harmonic pitch angle 
requirement.    This requirement appears to be associated with the 
increase in the fourth harmonic vertical shear and the fourth har- 
monic generalized aerodynamic force,   which are greater at A = 0. 076 
than they are at/« = 0. 259.    The second harmonic pitch-angle require- 
ment at/* = 0. 076 is approximately one-half that at/< = 0. 259iand the 
smaller magnitude of the pitch-control requirement at/* = 0. 076 again 
appears to be associated with the smaller vertical shear and the smaller 
generalized aerodynamic force. 

The collective pitch-angle requirements to eliminate the har- 
monics of the transmitted shears above n - A a.t/4 = 0. 076 are quite 
small (Figure 13)  and appear to be related to the magnitudes of the 
vertical shears for these harmonics.    When the second and fourth 
harmonic vertical shears are eliminated,  the azimuthal history of the 
vertical shear,  chown in Figure 12,  is virtually constant.    Comparison 
of the collective pitch-control schedules between the case for which all 
transmitted vertical shears were eliminated and that for which only the 
second and fourth harmonic vertical shears were eliminated shows very 
little difference in the pitch-control schedules at/* = 0.076 (Figure 13). 
In contrast,  at/* = 0. 259. the collective pitch-control schedule for 
eliminating all transmitted harmonic vertical shears showed significant 
amounts of pitch-control inputs above /? - 4 in comparison to those at 
* = 2 and 4 (Figure 7). 

The magnitudes of the harmonic components of the transmitted 
inplane shears decrease substantially as the advance ratio decreases 
from 0. 259 to 0.076,  although the third and seventh harmonics remain 
the two largest components for both advance ratios.   At/* = 0. 076,  the 
third harmonic pitch-control input appears to be quite large in com- 
parison to the magnitude of the third harmonic inplane shear,  and also 
in comparison to the seventh harmonic pitch control input required to 
eliminate an inplane shear of comparable magnitude.    The pitch-angle 
requirements to eliminate the remaining odd harmonic inplane shears 
are quite small,  thus being comparable in magnitude to the harmonic 
components of the inplane shears.    Also,  at /*. = 0. 076, the pitch-angle 
requirements at the third and seventh harmonics remained practically 
the same whether or not the remaining odd harmonic shears were 
eliminated (Figure 15),  whereas small changes were shown for these 
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conditions at/< = 0. 259.    Because of the comparatively low harmonic 
content in the inplane shear above the first harmonic,  the azimuthal 
history of the total noncanceling inplane shear per blade (Figure 14) 
is dominated by its first harmonic content. 

At/« = 0. 259, a pronounced effect was found of higher even 
harmonic pitch-control inputs on the harmonic components of the 
total inplane shear.   At/c = 0. 076, this coupling effect was substan- 
tially diminished such that the azimuthal variation of the inplane shear 
was essentially the same as that for the conventional control (Figure 14) 
in contrast to that at/i = 0. 259 (Figure 8). 

The collective and cyclic pitch-control schedules to eliminate 
the second and fourth harmonic vertical shears and the third and 
seventh harmonic inplane shears simultaneously are shown in Fig- 
ures 13 and 15,  respectively, lor/*= 0.076.   The second harmonic 
pitch-control input decreases somewhat from the case where only 
the second and fourth harmonic vertical shears are eliminated, 
while the fourth harmonic control input shows a nominal increase. 
The cyclic pitch-control inputs at the third harmonic show a some- 
what larger increase from the case where only the third and seventh 
harmonics of the inplane shear were eliminated,while the increase in 
the seventh harmonic pitch-control input is nominal.    The change in 
amplitude in the third harmonic was also accompanied by a change in 
phase of approximately 85 degrees, which led to a somewhat pronounced 
difference in the cyclic pitch-control schedule for the two cases (Figure 
15).    At/i = 0. 259, a phase ehift of approximately 120 degrees also 
occurred,but the change in amplitude of the seventh harmonic pitch- 
control input obscured the phase shift of the third harmonic in the 
comparison of the pitch control schedules (Figure 9). 

Comparison of the azimuthal variations of the noncanceling 
vertical root shears for Flight Condition DN66A,/* = 0. 215, for con- 
ventional control and higher harmonic pitch control a.t n = Z, 3,  4, ' 
and 7 is shown in Figure 16.    Similar comparison of the collective 
pitch-control schedules is shown in Figure 17, the inplane shear in 
Figure 18, and the cyclic pitch-control schedule in Figure 19. 

As might have been expected,  the largest transmitted vertical 
shears occurred at the second and fourth harmonics,  and the largest 
transmitted inplane shears occurred at the third and seventh harmonics. 
The second and fourth harmonic vertical shears,  however,  were smaller 
for this flight condition (/< = 0. 215) than for either of the other two cases 
investigated (/< = 0. 076 and/« = 0. 259).    In contrast,  the seventh harmonic 
inplane shear for this case was the largest of the three cases,while the 
third harmonic inplane shear had an intermediate value.    The collective 
and cyclic pitch-control inputs to eliminate the second,  third, fourth, 
and seventh harmonic transmitted shears simultaneously were not as 
severe as for/« = 0. 259ras might be expected. 
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The various comparisons of the cyclic and collective pitch 
control schedules for all cases investigated suggest that an optimization 
procedure would be required to implement a suitable pitch-control 
schedule which would minimize rather than eliminate the transmitted 
vertical and inplane shears. 

It is also quite evident that certain penalties exist in applying 
a higher harmonic root pitch-control system to eliminate some of the 
transmitted vertical and inplane shears.    Further computational e.fort 
would be required to assess the effects of certain problem areas in 
the application of higher harmonic pitch-control inputs.    For example, 
it may be desired to eliminate only the second harmonic vertical root 
shear rather than both the second and the fourth.    This collective pitch 
schedule could minimize the penalties sustained with respect to the 
generalized aerodynamic forces and inertia forces in the harmonic 
vertical and inplane root shears above /7 = 2,   A less ambitious 
simultaneous elimination of transmitted harmonic vertical and 
inplane shears also appeared to be desirable, particularly at the 
high advance ratios.   The pitch angle requirement to eliminate 
the seventh harmonic inplane shear at // = 0. 076 was 0.16 degree. 
At/*= 0.215, it was 0. 27 degree,  bufat/* = 0. 259,  it rose to 
1. 36 degrees.    Thus, at ^ = 0. 259,  the pitch-angle requirement 
would appear to be disproportionate in comparison to those at the 
lower advance ratios. 

Several factors not analyzed under the study conducted herein 
could also cause significant differences in the pitch-schedule require- 
ments.   Among these are the rotor rotational speed and the associated 
change in frequency of the various vibration modes.    The response in 
the first torsion mode,  for example,  produces a substantial angle-of- 
attack change,particularly in the highly loaded outboard section of the 
blade,which,  in turn,  effects a change in the pitch-angle requirement 
at the blade root.    The proximity of the frequency of the second chord- 
wise bending mode to the seventh harmonic of the rotor rotational 
speed was also instrumental in effecting large seventh harmonic pitch- 
angle requirements to eliminate the transmitted inertial forces asso- 
ciated with this mode. 
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ESTIMATED EFFECT OF HIGHER HARMONIC 
PITCH CONTROL ON PERFORMANCE 

A summary of the performance characteristics for con- 
ventional and higher harmonic pitch control for all cases and flight 
conditions investigated is given in Table II.    The required thrust 
load per blade for each configuration was constrained to equal the 
steady component of the root shear per blade,  and a value of 3200 
pounds was used in all cases. 

At the lowest advance ratio (/* = 0. 076),  the total drag per 
blade and, hence, the associated rotor torque are almost invariant 
with respect to the type of harmonic pitch control applied at the blade 
root.   Also,  atyu = 0. 215, the total drag per blade for conventional 
control is practically the same as that for the case of higher har- 
monic pitch control applied at * = 2,   3,  4, and 7.    At ^ = 0. 259. the 
total drag per blade for higher harmonic pitch control applied at If ■ 2 
and 4, /?  = 3 and 7,  and n = 3,  5,  7,   9,  and 11 was again approxi- 
mately the same as that for conventional control.    For higher har- 
monic pitch control applied at /? = 2,  4,  6,  8,   10, and 12 at/< ■ 0. 259, 
the total drag per blade increased by approximately 5 percent from 
that at conventional control ; when higher harmonic pitch control 
was applied at /? = 2,   3,  4, and 7,  the total drag increased by more 
than 20 percent from its value at conventional control.    The sharp 
increase in the total drag for the latter case is attributed to the high 
instantaneous blade angles of attack associated with this case,  and 
the corresponding nonlinear variation of the drag with angle of attack. 
The high instantaneous angles of attack stem primarily from two 
sources; namely,  the root pitch-control inputs (Figures 7 and 9) 
and the responses in the antisymmetric and symmetric torsional 
modes (Figures 10 and 11).   In these figures,  it is seen that the 
peak values of the angles of attack are much larger for higher 
harmonic pitch control applied at /? = 2,   3,  4,and 7 than for any 
other case investigated. 

The mean effective angle of attack (Figure 20 and Table IX) 
exhibits little change with the type of pit  .i control applied at the blade 
root at each advance ratio investigated.    This result is not surprising 
since the mean effective angle of attack is closely associated with the 
total lift carried by each rotor blade,  which was constrained to a 
constant value for all cases investigated. 

At /« = 0. 259.  the mean effective angle of attack drops sharply 
at the inboard section of the blade.    The resultant total drag is rela- 
tively unaffected, however, because the drag coefficient does not 
change appreciably for comparatively large changes in angle of attack 
at the low Mach numbers. 
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Surprisingly,  the required control moment shows more varia- 
tion among the various types of pitch control at A = 0. 076 than a.t M - 
0. 259.   except for the case of higher harmonic pitch control applied at 
n = 2,   3,   4, and 7.    A detailed examination of the constituent terms 
[Equation (55)] shows that the significant part in any variation of the 
control moment from that of conventional control was due to the change 
in response of the antisymmetric chordwise bending modes,  which exert 
a moment about the rotor hub because of preconing. 

At/i - 0.076,  the side force increases by approximately 8 
percent from its conventional-control value when even higher harmonic 
pitch control is applied or when both even and odd higher harmonic 
pitch controls are applied simultaneously.    The side force decreases 
by approximately 3 percent when odd higher harmonic pitch control is 
applied.    At/4.= 0.259,  the side force decreases by approximately 9 
percent from its conventional-control value when even or odd higher 
harmonic pitch control is applied,  and it decreases by about 14 percent 
when even and odd higher harmonic pitch controls are applied simul- 
taneously.    At >* = 0. 21 5,  the side force decreased by approximately 
9 percent from its conventional-control value when higher harmonic 
pitch control was applied at n =2,   3,  4, and 7.   In all cases,  the change 
in the side force was due primarily to changes in the contributions from 
the inertia forces of the rotor blades to the side force [Equation (56)] 
rather than from changes in the contributions from the aerodynamic 
forces. 

At/A = 0.076,  the longitudinal force [/-Force,   Equation (57)] 
remained unchanged from its conventional-control value when odd higher 
harmonic pitch control was applied,  and it decreased by approximately 5 
percent when even higher harmonic pitch control was applied.    Aiji- 0.259, 
the longitudinal force increased slightly from its conventional-control value 
when even higher harmonic pitch control was applied and decreased slightly 
when odd higher harmonic pitch control was applied.    When higher har- 
monic pitch control was applied at /; = 2,   3,  4, and 7,  the longitudinal 
force decreased from its conventional-control value by approximately 
8 percent at /^ = 0. 076,   by approximately 6 percent at /*. = 0. 21 5,  and 
by approximately 50 percent at A = 0. 259.    The differences in the effect 
of higher harmonic pitch controls on the longitudinal forces at the various 
advance ratios are associated with the amplitudes of the applied higher 
harmonic pitch controls,  which also correspond more closely to the mag- 
nitudes of the dynamic responses of the rotor blades than to the magnitudes 
of the aerodynamic forces.    Examination of the constituent terms in the 
longitudinal force [Equation (57)] shows that the differences in the longi- 
tudinal forces are due primarily to changes in the contributions from the 
inertia forces rather than from the aerodynamic forces.    In particular, 
for higher harmonic pitch control applied at/> = 2,   3,  4,  and 7 at /* = 
0. 259,   the response in the first antisymmetric inplane bending mode 
was approximately one-half that of the conventional-control value, 
which accounted for the 50-percent change in the longitudinal force. 
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From the limited analysis which had beer    onducted herein 
with respect to flight conditions,   rotor rotational sp  ed,  etc., it 
appears that the most severe penalty of applying a higher harmonic 
pitch-control system would lie in the increased power required to 
overcome the increased drag forces.    The higher drag forces, in 
turn,  stem from the higher angles of attack required to eliminate 
certain of the transmitted shears.    Since the inertia forces contribute 
substantially to the transmitted shears in many cases, further inves- 
tigation would be required to evaluate the effect of dynamic parameters 
on the performance characteristics of rotors with higher harmonic 
pitch control. 
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CONCLUSIONS AND RECOMMENDATIONS 

The following specific conclusions were reached on the basis 
of this investigation: 

1. All noncanceling vertical root shears of the two- 
bladed teetering rotor from the second through 
twelfth harmonics can be eliminated with higher 
harmonic pitch-angle control introduc  u at the 
blade root (as in conventional control systems) 
for all flight conditions investigated.    The largest 
part of the oscillatory transmitted vertical root 
shears can be removed by using pitch-angle inputs 
only at the second and fourth harmonics. 

2. All noncanceling inplane root shears of the two- 
bladed teetering rotor from the third through 
eleventh harmonics can be eliminated with 
higher harmonic pitch-angle control introduced 
at the blade root for ail flight conditions inves- 
tigated.    The largest of these oscillatory trans- 
mitted inplane root shears can be removed by 
using pitch-angle inputs at the third and seventh 
harmonics. 

3. For the two-bladed teetering rotor,  the first 
harmonic inplane shear (the largest transmitted 
shear) cannot be eliminated by root pitch control. 
The first harmonic ro^t pitch control is unavailable 
because it is necessary ior ordinary cyclic pitch 
control of the tip-path plane. 

4. Except for the first harmonic inplane shear, 
the largest of the citra oscillatory transmitted 
vertical and inplam roct shears can be eliminated 
simultaneously with second, third,  fourth, and 
seventh harmonic pitch-angle control introduced 
at the blade root.    The resulting pitch-angle 
requirements are different from those cited in 
Conclusions 1 and 2 for the same flight condition. 

5. The amplitudes and phase angles of the pitch 
inputs required to eliminate only the noncanceling 
vertical root shears, only the noncanceling inplane 
root shears,  and both simultaneously also vary 
appreciably with flight condition.    In general, 
the higher harmonic pitch-angle requirements 
for eliminating transmitted harmonic root shears 
become more severe with increasing advance ratio. 
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6. It appears undesirable to attempt to eliminate all 
noncanceling harmonic vertical and inplane root 
shears using a control system with pitch inputs 
introduced at the blade root.    The higher har- 
monic pitch inputs, which are introduced to 
eliminate transmitted root shears,  excite 
dynamic blade motions, and the inerlia forces 
due to these motions also produce root shears. 
At some harmonic numbers (depending on blade 
parameters and flight condition),  the roo* shears 
due to the inertia forces are almost equal and 
opposite to the root shears due to the corre- 
sponding aerodynamic forces.    Consequently, 
large pitch-angle inputs and large blade dynamic 
motions may result from the pitch-angle inputs 
designed to eliminate comparatively small root 
shears.    Under these conditions,  it would be 
undesirable to introduce control inputs at certain 
harmonic numbers. 

7. The effect of higher harmonic pitch control on 
rotor performance was small for most of the 
cases analyzed.    Under certain conditions, 
however,  the high instantaneous angles of attack 
required to eliminate certain of the transmitted 
root shears produced much larger drag forces 
on the rotor. 

8. Instabilities in the iterative solution of the equations 
of motion may stem from the involved dependencies 
of the aerodynamic loadings on the blade dynamic 
motions.    It has been found possible to iterate the 
equations of motion successfully to solution by 
providing improved initial conditions on the gener- 
alized forces and coordinates, and by using "itera- 
tion factors'' on them as well.    These factors could 
be chosen differently for each mode and were found 
to depend on the flight condition and the type of 
harmonic pitch control applied. 

The results of this study, which indicate that appropriate 
pitch-angle inputs can produce significant reductions in the trans- 
mitted oscillatory root shears,  offer definite encouragement toward 
the application of this approach to reduce fuselage vibrations.    To 
further this goal, additional research is recommended to: 

1.     Extend the present numerical analysis to rotor 
configurations other than the UH-1A two-bladed 
teetering rotor. 
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2. Study the application of symmetric and antisym- 
metric differential pitch-control motions of the 
inner and outer sections of the blade to eliminate 
transmitted harmonic shears,  particularly the 
first harmonic shear of the two-bladed teetering 
rotor and at harmonics where pitch inputs 
at the blade root tend to excite large dynamic 
responses. 

3. Extend the analysis to determine the pitch-control 
configurations which would provide the optimal 
rotor characteristics with respect to transmitted 
shears,   blade dynamic motions,and performance, 

4. Study the application of a servo system for con- 
trolling the pitch inputs which would use measured 
transmitted shears as a feedback signal.    This 
effort is recommended since large differences in 
the higher harmonic pitch-angle inputs are required 
at different flight conditions. 
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Table I 

PARAMETERS FOR ADJUSTED FLIGHT CONDITIONS 

PARAMETERS 
ADJUSTED FLIGHT CONDITION* 

PARAMETERS 
DN65A DN66A DN67A 

vf 
= FORWARD VELOCITY, ft/sec 55.1 155.4 188.0 1 

knots 32.6 92.1 111.4 

n — ROTOR ANGULAR VELOCITY, rad/sec 32.8 32.8 32.8 
rpm 313 313 313 

A 
= ADVANCE RATIO 0.076 0.215 0.259 

/> = AIR DENSITY, slugs/ft3 0.002150 0.002155 0.002155 
= LOAD/BLADE, lb 3200 3200 3200 
= SHAFT ANGLE, dag 4.5 4.6 6.5 

TIP-PATH-PLANE POSITION 
RELATIVE TO SHAFT: 

^1C 
= FORWARD TILT, deg -2.02 -0.74 -0.65 

/»1S 
= LEFT TILT, deg -0.50 0.68 1.80 

'THE ADJUSTED FLIGHT CONDITIONS DN65A, DN66A, AND DN67A ARE SLIGHTLY DIFFERENT 
FROM THE CORRESPONDING CONDITIONS OF REFERENCE 6. 
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Table  11 

EFFECT OF HIGHER HARMONIC PITCH-A 
FLIGHT CONDITION DN6 

COMPUTER RUN  E2C COMPUTER RUN  E4E COMPUTER RUN  E3E 

CONVENTIONAL CONTROL HIGHER HARMONIC  PITCH HIGHER  HARMONIC PITCH H 

n 

CONTROL AT  n  = 2,4 CONTROL AT  n = 2,4,6,8,K ),12 

HARMONIC ROOT SHEAR*   (ONE BLADE) HARMONIC ROOT SHEAR*   (ONE BLADE) HARMONIC  ROOT SHEAR*   (ONE BLADE) HARMON! 

VERTICAL INPLANE VERTICAL INPLANE VERTICAL INPLANE VER 

AMPLITUDE PHASE 
ANGLE AMPLITUDE PHASE 

ANGLE AMPLITUDt PHASE 
ANGLE AMPLITUDE PHASE 

ANGLE AMPLITUDE PHASE 
ANGLE AMPLITUDE PHASE 

ANGLE AMPLITUI 

(lb) (deg) (lb) (deg) (lb) (deg) (lb) (deg) (lb) (deg) (lb) (deg) (lb) 

0 3200.0 0 508.6 0 3200.0 0 515.5 0 3200.Q 0 538.2 0 3200.0 

1 27m.0 -109.2 1537.0 -144.0 2764.0 -109.2 1435.0 -139.7 2760.0 -109.2 1435.0 -139.9 2746.0 

2 250.5 163.0 74.0 104.4 0 0 84.0 166.f 0 0 100.7 163.7 183.9 

3 213.1 150.5 38.6 162.6 100.6 127.5 29.9 -122.0 105.1 131.4 41.11 -118.4 299.4 

"t 57.3 56.5 12.8 143.4 0 0 19.3 33.5 0 0 26.5 38.1 114.5 

5 68.0 -25.3 13.1 -131.2 91.2 13.3 15.2 83.3 104.7 52.3 46.B 72.9 75.0 

6 15.1 -112.4 23.8 -136.7 20.4 -108.9 34.2 -148.6 0 0 96.5 -158.8 18.3 

7 5.5 35.7 33.0 161.4 4.3 33.3 159.6 166.2 7.8 96.5 484.9 -138.6 5.6 

8 18.3 126.1 7.6 62.7 19.5 i27.8 13.5 156.6 0 0 92.1 149.1 22.3 

9 2.0 -55.1 4.4 158.1 1.3 -71.6 8.0 55.9 5.0 -55.3 33.8 172.0 2.0 

10 20.1 -61.0 4.9 113.1 18.5 -59.9 0.4 -143.3 0 0 21.2 -22.8 19.6 

11 1.9 127.7 1.8 -98.3 2.2 107.2 2.7 156.9 4.7 135.8 6.0 -34.3 2.3 

12 2.6 0 1.6 178.3 1.8 -0.1 0.2 -179.3 0 0 7.2 178.6 1.5 

*VE mCAL ROOT SHEARS ARE NONCANCELING FOR n = 0 OR n = EVEN AND ARE CAN CELING FOR n = ODD. 

IN PLANE ROOT SHEARS ARE NONCANCELING FOR n = ODD AND ARE CANCEL ING FOR n = 0 OR n = EVEN. 

AZ IMUTHAL VARIATION OF   nth   HARMONIC ROOT SHEAR =  (AMPLITUDE) x cos(n^ + PHASE ANGLE), 
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Table  III 

GHER HARMONIC PITCH-ANGLE INPUTS ON ROOT SHEARS, 
FLIGHT CONDITION DN67A,/«= 0.259 

RUN E3E COMPUTER RUN E6C COMPUTER RUN  E7C COMPUTER RUN E8D 

ONIC PITCH I             HIGHER HARMONIC PITCH |            HIGHER HARMONIC PITCH HIGHER HARMONIC PITCH 

2^,6,8,10,12 CONTROL AT n = 3,7 CONTROL AT n = 3,b,7,9 ,11 CONTROL AT n = 2,3,4 ,7 

EAR'   (ONE BLADE) HARMONIC ROOT SHEAR'   (ONE BLADE) HARMONIC ROOT SHEAR'   (ONE BLADE) HARMONIC ROOT SHEAR*   (ONE BLADE) 

INPLANE VERTICAL INPLANE VERTICAL INPLANE VERTICAL INPLANE 

AMPLITUDE PHASE 
ANGLE AMPLITUDE PHASE 

ANGLE AMPLITUDE PHASE 
ANGLE AMPLITUDE PHASE 

ANGLE AMPLITUDE PHASE 
ANGLE AMPLITUDE PHASE 

ANGLE AMPLITUDE PHASE 
ANGLE 

(lb) (deg) (lb) (deg) (lb) (deg) (lb) (deg) (lb) (deg) (lb) (deg) (lb) (deg) 

538.2 0 3200.0 0 513.1 0 3200.0 0 512.3 0 3200.0 0 617.9 0 

mss.o -139.9 2746.0 -109.2 1430.0 -141.9 2744.0 -109.3 1403.0 -141.9 2761.0 -109.2 1079.0 -161.9 

100.7 163.7 183.9 173.5 14.9 157.4 183.7 176.3 7.4 173.8 0 0 152.6 167.1 

m.n -118.4 299.4 146.0 0 0 30b. 6 143.2 0 0 128.6 34.3 0 0 

26.5 38.1 114.5 102.8 23.4 108.3 102.4 92.6 12.0 96.4 0 0 28.2 67.8 

46.5 72.9 75.0 -27.5 18.5 -166.2 38.3 -121.9 0 0 139.0 5.8 26.9 84.6 

96.5 -158.8 18.3 -96.1 31.6 -136.8 11.0 -92.1 23.6 -163.3 40.2 -86.4 113.3 -64.6 

484.9 -138.6 5.6 32.0 0 0 6.5 32.1 0 0 4.1 -59.6 0 0 

92.1 149.1 22.3 127.9 9.2 36.5 22.9 129.1 3.4 -62.5 38.8 117.8 140.1 -75.1 

33.8 172.0 2.0 -70.8 5.3 133.1 2.1 -78.8 0 0 0.5 -24.5 18.3 -124.1 

21.2 -22.8 19.6 -56.8 6.2 120.5 19.1 -52.3 6.7 93.3 18.9 -53.6 22.2 120.2 

6.0 -34.3 2.3 117.8 2.8 -107.3 2.4 120.4 0 0 2.6 114.7 3.5 70.4 

7.2 178.5 1.5 0 1.2 178.0 1.0 0.2 1.7 178.2 1.6 179.9 5.7 -1.0 

J. 
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Table IV 

REQUIRED PITCH ANGLES TO ELIMINATE N0NCANCELIN6 ROOT SHEARS, 

FLIGHT CONDITION DN67Af^ = 0.259 

n 

COMPUTER RUN E2C COMPUTER RUN EHE COMPUTER RUN E3E 

PITCH ANOLES WITH PITCH ANGLES TO PITCH ANGLES TO 
CONVENTIONAL CONTROL ELIMINATE ROOT SHEARS ELIMINATE ROOT SHEARS 

AT n = 2,1» AT n = 2,11,6,8,10,12 

AMPLITUDE PHASE ANGLES AMPLITUDE PHASE ANGLES AMPLITUDE PHASE ANGLES 
(deg) (dag) (deg) (deg) (deg) (deg) 

19.«0 0 19.54 0 19.511 0 
6.28 59.2 6.77 59.5 6.76 59.11 

1.09 153.6 1.11 !53.7 
0 0 0 0 
0.70 65.6 0.73 68.9 

0 0 
0.67 -  10.H 
0 0 
0.90 -1311.5 
0 0 

10 0.55 ■18.5 
11 0 0 
12 0.20 -106.2 

n 

COMPUTER RUN E6C COMPUTER RUN E7C COMPUTER RUN E8D 

PITCH ANGLES TO PITCH ANGLES TO PITCH ANGLES TO 

ELIMINATE ROOT SHEARS ELIMINATE ROOT SHEARS ELIMINATE ROOT SHEARS 
AT n = 3,7 AT n = 3,6,7,9,11 AT n = 2,3,11,7 

AMPLITUDE PHASE ANGLES AMPLITUDE PHASE ANGLES AMPLITUDE 
(deg) 

PHASE ANGLES 
(deg) (deg) (deg) (deg) (deg) 

0 19.112 0 lO.U 0 19.5)1 0 

I 6.31 58.9 6.31 58.8 6.80 59.6 
2 0 0 0 0 1.29 160.1 
3 1.17 50.5 1.26 w.o 0.9)1 - 69.5 
11 0 0 0 0 1.29 ■m.G 
5 0 0 0.33 98.5 0 0 
6 0 0 0 0 0 0 
7 0.23 178.8 0.311 -179.7 1.36 139.2 
8 0 0 
9 O.Oil 109.3 

10 0 0 
11 0.C5 -115.1 

12 

A ZIMUTHAL VARIATION OF n th HARMONIC PITCH ANGLE ■ : 

(AMPLITUDE) x co •(nl+ PHASE ANGLE) 
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EFFECT OF HIGHER HARMONIC 
FLIGHT CONDI! 

n 

COMPUTER RUN GIB COMPUTER RUN G2F COMPUTER RUN G3C 

CONVENTIONAL CONTROL HIGHER HARMONIC PITCH 

CONTROL AT n = 2,4 

HIGHER HARMONIC PITCH 
CONTROL AT n = 2,4,6,8,10 ,12 

HARMONIC ROOT SHEAR*   (ONE BLADE) HARMONIC ROOT SHEAR*   (ONE BLADE) HARMONIC ROOT SHEAR*   (ONE BLADE) HARM 

VERTICAL INPLANE VERTICAL INPLANE |       VERTICAL INPLANE VI 

AMPLITUDE 

(lb) 

PHASE 
ANGLE 
(deg) 

AMPLITUDE 

(lb) 

PHASE 
ANGLE 
(deg) 

AMPLITUDE 

(lb) 

PHASE 
ANGLE 

(deg) 

AMPLITUDE 

(lb) 

PHASE 
ANGLE 
(deg) 

AMPLITUDE 

(lb) 

PHASE 
ANGLE 
(deg) 

AMPLITUDE 

(lb) 

PHASE 
ANGLE 
(deg) 

AMPLI1 

(lb 

0 
1 

3200.0 
21110.0 

0 

169.5 

344.8 

1097.0 

0 

-116.8 

3200.0 

2440.0 

0 

169.4 

343.4 

1065.0 

0 

-119.7 

3200.0 

2440.0 

0 

169.4 

343.1 

1060.0 

0 

-119.7 

3200. 

2442. 

2 160.3 8.2 1.6 137.8 0 0 14.7 14.7 0 0 15.1 13.6 170. 

3 60.1 100.3 8.2 -130,4 61.5 120.8 11.6 -65.0 61.3 121.1 11.8 -64.1 117. 

H 69.7 2if.2 3.8 -176.0 0 0 11.9 90.0 0 0 12.5 68.2 78. 

5 26.6 -18.8 1.0 101.7 47.1 -15.0 8.8 140.5 49.8 -11.6 11.2 145.0 18. 

6 3.7 -166.1* 2.6 36.0 5.5 -177.7 1.6 -88.5 0 0 7.7 -81.2 4. 

7 2.2 32.8 5.8 6.7 2.9 16.9 10.9 4.2 3.2 10.2 29.7 4.3 2. 

8 0.8 167.7 1.2 -175.0 0.5 123.1 3.6 67.3 0 0 2.9 94.0 O.i 

9 0.6 -161.1» 0.4 2.3 0.6 -168.4 0.8 137.4 0.7 -170.7 1.1 177.9 0.1 

10 0.9 6.0 0.1 18.8 1.0 -1.7 0.9 -152.8 0 0 1.2 -122.3 I.I 

11 0.3 -6.3 0.1 17.5 0.3 -0.1 0.7 -72.1 0.3 7.2 0.7 -55.8 o.: 
12 0.1 -179.9 0.1 178.6 0.2 -179.8 0.1 -1.3 0 0 0.1 -1.3 o.: 

*VER 
INP 
AZI 

TICAL ROOT SHEARS ARE N0NCANCELIW6 
LANE ROOT SHEARS ARE NONCAHCELING 
MUTHAL VARIATION OF  nth   HARMONIC 

FOR n = 0 Oft n = EVEN AND 

FOR n = ODD AND ARE CANCEL 

ROOT SHEAR = (AMPLITUDE) x 

ARE CAN 
NG FOR 
cos(ni/' 

CELING FOR n = ODD. 
n = 0 OR n = EVEN. 
+ PHASE ANGLE) . 

I\ 
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Table V 

HIGHER HARMONIC PITCH-ANGLE INPUTS ON ROOT SHEARS, 
FLIGHT CONDITION DN65A,ya.= 0.076 

G3C COMPUTER RUN G6B COMPUTER RUN G7B COMPUTER RUN G8C 

PITCH HIGHER HARMONIC PITCH HIGHER HARMONIC PITCI 1 HIGHER HARMONIC PITCI 1 
,6,8,10 .12 CONTROL AT n = 3,7 '        CONTROL AT n = 3,5,7,9 11 CONTROL AT n = 2,3,4, 7 

'  (ONE BLADE) HARMONIC ROOT SHEAR*  (ONE BLADE) HARMONIC ROOT SHEAR*  (ONE BLADE) HARMONIC ROOT SHEAR*  (ONE BLADE) 

IN PLANE VERTICAL INPLANE VERTICAL INPLANE VERTICAL INPLANE 

LITUOE PHASE 
ANGLE AMPLITUDE PHASE 

ANGLE AMPLITUDE PHASE 
ANGLE AMPLITUDE PHASE 

ANGLE AMPLITUDE PHASE 
ANGLE AMPLITUDE PHASE 

ANGLE AMPLITUDE PHASE 
ANGLE 

[lb) (deg) (lb) (deg) (lb) (deg) (lb) (deg) (lb) (deg) (lb) (deg) (lb) (deg) 

43.1 0 3200.0 0 345.9 0 3200.0 0 346.2 0 3200.0 0 346.1 0 

60.0 -119.7 2442.0 169.4 1089.0 -116.2 2442.0 169.4 1090.0 -116.2 2440.0 169.3 1027.0 -121.4 

15.1 13.6 170.6 3.7 11.0 -51.7 170.7 3.6 11.1 -52.7 0 0 30.8 26.4 

11.8 -64.1 117.2 74.6 0 0 117.9 73.9 0 0 95.7 -19.3 0 0 

12.5 88.2 78.3 30.5 6.5 169.1 78.0 30.4 6.0 169.0 0 0 15.8 -107.9 

11.2 145.0 18.8 -9.2 1.0 -81.2 15.3 13.4 0 0 59.0 -1.1 9.7 152.2 

7.7 -81.2 4.4 -173.3 3.9 37.4 4.2 -173.6 3.4 46.9 6.5 170.4 5.5 -33.9 

29.7 4.8 2.1 37.4 0 0 2.1 37.3 0 0 2.8 26.2 0 0 

2.9 94.0 0.4 -174.3 0.8 114.9 0.5 -178.2 0.8 120.9 0.7 -11.3 4.5 40.8 

1.1 177.9 0.6 -164.3 0.2 65.7 0.6 -163.7 0 0 0.6 -170.5 0.8 -168.8 

1.2 -122.3 1.0 4.2 0.4 -143.6 1.1 4.4 0.2 -148.4 1.0 -1.6 0.8 -73.9 

0.7 -55.8 0.3 -14.3 0.4 -67.0 0.3 -15.4 0 0 0.3 -17.5 0.8 -65.9 

0.1 -1.3 0.2 -179.9 0.1 -1.3 0.2 180.0 0.1 -1.0 0.2 179.9 0.4 -1.4 



Table VI 

REQUIRED PITCH ANGLES TO ELIMINATE NONCANCELING ROOT SHEARS, 

FLIGHT CONDITION DN65A, /*■ « 0.076 

n 

COMPUTER RUN GIB COMPUTER RUN 62F COMPUTER RUN G8C 

PITCH AHOLES WITH PITCH ANGLES TO PITCH ANGLES TO 

CONVENTIONAL CONTROL ELIMINATE ROOT SHEARS ELIMINATE ROOT SHEARS 

AT n = 2,* AT n « 2,^,6,8,10,12 

AMPLITUDE PHASE ANGLES AMPLITUDE PHASE ANGLES AMPLITUDE PHASE ANGLES 
(d.g) (dag) (dag) (d.g) (dtg) 

0 17.1(5 0 17. M 0 17.1(2 0 
1 1.71 -13.0 1.77 -15.1 1.77 -15.1 
2 0.59 2.2 0.59 2.3 
3 0 0 0 0 
4 0.81 13.9 0.80 IB.« 
5 0 0 
6 0.10 -98.9 
7 0 0 
8 0.01 -11(1.3 
9 0 0 

10 0.02 77.8 
11 0 0 
12 O.OOi» -106.* 

n 

COMPUTER RUN GfiS COMPUTER RUN 678 COMPUTER RUN 08C 

PITCH AHGLES TO PITCH ANGLES TO PITCH ANGLES TO 

ELIMINATE ROOT SHEARS ELIMINATE ROOT SHEARS ELIMINATE ROOT SHEARS 

AT n = 3,7 AT n = 3,5,7,9,11 AT n = 2,8,4,7 

AMPLITUDE 
(d*g) 

PHASE ANGLES AMPLITUDE 
(deg) 

PHASE ANGLES 
(dt«) 

AMPLITUDE 
(d.g) 

PHASE ANGLES 

0 17.46 0 17.1(7 0 17.44 0 
1 1.70 -12.6 1.70 -12.7 1.76 -12.6 
2 0 0 0 0 0.49 1.9 

3 0.52 -0.7 0.52 -0.7 0.97 -85.5 
0 0 0 0 1.05 6.5 
0 0 0.03 35.9 0 0 
0 0 0 0 0 0 
O.OS 19.9 O.OS 25.X 0.16 38.4 

0 0 
0.01 62.4 

10 0 0 
11 0.01 -135.4 
12 

AZIMUTHAL VARIATION OF i ith HARMONIC PITCH ANGLE 

(AMPLITUDE) x cot(n* ♦ PHASE ANGLE) 

43 
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Table VIII 

REQUIRED PITCH ANGLES TO ELIMINATE N0NCANCELIN6 ROOT SHEARS, 

FLIGHT CONDITION DN66A,/** 0.215 

n 

COMPUTER RUN FIB COMPUTER RUN FID 

PITCH ANCLES WITH 
CONVENTION ,L CONTROL 

PITCH AN8LES TO 
ELIMINATE ROOT SHEARS 

AT n = 2, 8, %, 7 

AMPLITUDE 
(d«g) 

PHASE ANGLES 
(d«0) 

AMPLITUDE PHASE ANOLES 

0 

1 

2 

3 

i» 

5 

6 

7 

18.00 

«.81 

0 

81.0 

18.08 

».711 

0.82 

0.78 

0.87 

0 

0 

0.27 

0 

81.5 

185.9 

-87.2 

29.5 

0 

0 

158.8 

AZIHUTHAL VARIATION OF nth HARMONIC PITCH ANGLE ■ 
(AMPLITUDE) x co«(nif *   PHASE AN8LE) 
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Figure 1.  SCHEMATIC DIAGRAM OF MODES USED TO DESCRIBE 
MOTIONS OF A TWO-BLADED TEETERING ROTOR 
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PLANE PERPENDICULAR 
TO SHAFT SHAFT AXIS 

(FORWARO VELOCITY) 

Vt • i l r + Vf. cos <xf sin 

V* cos a. cos 

n 

Figure 2. RELATIVE VELOCITIES DUE TO FORWARD MOTION AND BLADE 
ROTATION (REFERRED TO A SHAFT-ORIENTED REFERENT SYSTEM) 

MIDCHORD 
AXIS 

m 

REFERENCE 
PLANE dr Vf cos aes cos f 

SHAFT AXIS 

SECTION A-A 

Figure 3. TRANSVERSE VELOCITY OF BLADE MIDCHORD AXIS RELATIVE 
TO AIR (INDUCED VELOCITIES NOT INCLUDED) 
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AERODYNAMICS OF ROTOR-WAKE SYSTEM 

(FHGHT COUP.) 

(BLADE GEOMETRY) 

(MODE SHAPES) 

{[D] MATRIX COEFS 
(MASS, STIFFNESS 
ETC. ) i 

I [YP] , PRESCRIBED 
[VALUES OF VAR IABLES 

COMPUTATION OF V { , MAKE GEO»CTRY, 
AND INDUCED VELOCITY COEFFICIENTS 

OF EQS. (50) . (43) . AND (»U) 

COMPUTATION OF 
RELATIVE MOTION 

SY 
EQS. (15). (16), (17) 

<vvV 

*Q 
V« 

COMPUTATION OF 
AERODYNAMIC LOADINGS 

BY EQS. (48 ) , (K9), AND (52) 

(AZIMUTHAL VARIATION OF 
LOADINGS 

DYNAMIC RESPONSE, REQUIRED PITCH ANGLES 

EVALUATION OF 
GENERALIZED AERO. 

FORCES BY 
EQS. ( I S ) . ( 19 ) . 

AND (20) 

V*'j HARMONIC ANAL. 
OF GENERALIZED 
AERO. FORCES 

BY EQ. (2) 

{SEN. AERO. FORCE MATRICES, G ( n , l ) } 

SOLUTION FOR HARMONICS 
OF MOTIONS, ROOT 

SHEARS. AND REQUIRED 
PITCH ANGLES, 

EQ. (13) 

['("••Pi . SUMMATION OF 
HARMONIC 
COMPONENTS 
BY EQ. ( I ) 

EVALUATION OF 
I f c ' i IN r EQS. 

BY £Q.(H2) 

SIMULTANEOUS EVALUATION OF 
SOLUTION FOR BOUND AHD GLAUERT COEFS 

VORTICITIES, EQ. ( « | ) 
AHD 

BY EQ.(36) 

(/-•.) (O) 
v» 

s 
s 
Ui 
Q 

3 

"I 

(REQUIRED 
PITCH 
ANGLES) 

(RESIDUAL 
ROOT 
SHEARS) 

Figure U. SCHEMATIC DIAGRAM OF. THE ANALYTICAL PROBLEM OF EVALUATING 
PITCH-ANGLE INPUTS TO ELIMINATE OSCILLATORY ROOT SHEARS 
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GIVEN FROM (t-l)tB APPROX.: 
AZIMUTHAL VARIATIONS AND 
HARMONICS OF MOTIONS 

AERODYNAMIC PROiLEM: 
SOLVE ITERATIVELV FOR f 

COMPUTE BLADE LOADINGS 
BASED ON PREVIOUS MOTIONS 

(AERO. LOADINGS 
A' V dk) 

ITERATION FACTORS 
COMPUTE GENERALIZED 

AEROOYNAMIC FORCES. AND FIND 
THEIR HARMONIC COEFFICIENTS 

(USE ITERATION FACTORS IN EQ. (29)) 

YES 
GENERALIZED 
AEROOYNAMIC 
FORCE MATRICES, [«(*"•)]) 

DYNAMIC MOTIONS, 
RESIWAL SNEARS 
MO REQUIRED PITCH 
AHLE INPUTS 

COMPUTE RIGHT-HAHD SIDE 

OF EQ. (27) 
INPUT MATRICES 

ITERATION FACTORS 

JisJ COMPUTE "NEW" HARMONIC 
VARIABLES USING ITERATION 

FACTORS IN EQ. (30) INPUT MATRIX 

S OID x 
NOTIONS 

CONVEME 

START ( t + l ) 
APPROX. 

COMBINE HARMONICS 
TO OBTAIN 

AZIMUTHAL VARIATIONS 

Figure 5. SCHEMATIC DIAGRAM OF PRINCIPAL STEPS IN ITERATIVE SOLUTION 
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CONVENTIONAL CONTROL 
PITCH CONTROL AT n = 2,Y 
PITCH CONTROL AT n = 3,7 
PITCH CONTROL AT n = 3,5,7,9 
PITCH CONTROL AT n = 2,3,̂ ,7 
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Figure 6. COMPARISONS OF AZIMUTHAL VARIATIONS OF NONCANCELING 
VERTICAL ROOT SHEARS - FLIGHT CONDITION DN67A, M - C-259 
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CONVENTIONAL CONTROL AT n PITCH CONTROL AT n = 2 ,1 in 
PITCH CONTROL AT n = 2,1,6,8,10,12 
PITCH CONTROL AT n = 2 ,3,1,7 

22 A A 
. 20 

i U ' u\ i/l i,\ \A .. 
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K v ^ ,j V v 
V V J I I I ' 

•TO M 
,6 L _ l I I I L 

90 180 270 360 
AZIMUTH ANGLE,f , deg 

Figure 7. COMPARISONS OF COLLECTIVE PITCH CONTROL SCHEDULES 
FOR ELIMINATING NONCANCELING HARMONIC ROOT SHEARS 
FLIGHT CONDITION DN67A, ft = 0.259 
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CONVENTIOHAL CONTROL 
PITCH CONTROL AT n = 2,1 

2000 r 
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PITCH CONTROL AT n = 2,1,6,8,10,12 
PITCH CONTROL AT n = 3,7 
PITCH CONTROL AT n = 3,5,7,9,11 
PITCH CONTROL AT n = 2,3,1,7 
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Figure 8. COMPARISONS OF AZIMUTHAL VARIATIONS OF NONCANCELING 
INPLANE ROOT SHEARS - FLIGHT CONDITION DN67A, = 0.259 
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CONVENTIONAL CONTROL 
PITCH CONTROL AT n = 2,H 
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Figure 9. COMPARISONS OF CYCLIC PITCH CONTROL SCHEDULES FOR 
ELIMINATING NONCANCELING HARMONIC ROOT SHEARS -
FLIGHT CONDITION DN67A,^ = 0.259 
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CONVENTIONAL CONTROL 
PITCH CONTROL AT n = 2,1» 
PITCH CONTROL AT n = 3,7 
PITCH CONTROL AT n = 3,5,7,9,11 
PITCH CONTROL AT n s 2,3,4,7 
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Figure 12. COMPARISONS OF AZIMUTHAL VARIATIONS OF NONCANCELING 
VERTICAL ROOT SHEARS - FLIGHT CONDITION DN65A,/a.= 0.076 
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Figure 13. COMPARISONS OF COLLECTIVE PITCH CONTROL SCHEDULES 
FOR ELIMINATING N0NCANCELIN6 HARMONIC ROOT SHEARS 
FLIGHT CONDITION DN65A,/< ■ 0.076 
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     PITCH COS 
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Figure H. COMPARISONS OF AZIMUTHAL VARIATIONS OF N0NCANCELIN6 
INPLANE ROOT SHEARS - FLIGHT CONDITION DN6SA, /c - 0.076 
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 COHVEHTIOML CQJTROL „ „ 
 PITCH CONTROL AT n = 2,* 
  PITCH COHTROL *T n = 3,7 , 
 PITCH COHTROL AT n = 5,6,7,9,11 
 PITCH COHTROL AT n = 2,8,»,7 

90 180 

AZIMUTH ANGLE,#, deg 

Figure 15. COMPARISONS OF CYCLIC PITClTcONTROL SCHEDULES FOR 
ELIMINATING NONCANCELING HARMONIC ROOT SHEARS - 
FLIGHT CONDITION DN65A, /*= 0.076 
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APPENDIX I 

AERODYNAMICS OF ROTOR-WAKE SYSTEM 
AND REPRESENTATION OF DRAG FORCES 

The treMment of the aerodynanrüce of the rotor-wake eyetem 
was basically the same as that uaed in Reference 2, and an abbreviated 
deacription of the anaiyeie was outlined in Reference 1.    Minor modi- 
fications of the aerodynamic analyeis were made in conjunction with 
the inclusion of the inplane aerodynamic forces, and a brief description 
nf the complete aerodynamic analysis is included herein for convenience. 

The shed and trailing vorticity distributions in the wake of each 
blade are represented by an arrangement of straight-line vortex fila- 
ments as indicated in the sketch below. 

miLIN VNTEX FIUHNTI 

mo VMTCI FiuMEara 

TIP VNTEX 

EXAMPLE OF WAKE CONFIOURATION 

For simplicity,  the case of only four radial blade segments 
is shown on the diagram (i. e., MR - 4).    Trailing vortex filaments 
arise only at the ends of the blade segments,since it is assumed that 
there is no radial variation in bound vorticity along each segment. 
Shed vorticity is deposited continuously in the wake behind each blade 
of an actual rotor with an intensity equal to the rate of change of 
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bound vortic'ty.    However, the numerical solution is carried out 
discontinuously using discrete time or azimuth angle increments. 
The discontinuous azimuth angles are denoted by f,with a small 
script letter used as a subscript (e. g., «^   or Wj ).    The equally 
spaced azimuth angles are given by the formula  ^4 ' 2n(i-f)/(MA) , 
where 4 takes on all integer values from one to the total number of 
azimuth positions (AM).    The shed vorticity deposited by each blade 
segment in a given time increment is lumped into a single shed 
vortex f lament in the computational model as indicated on the 
sketch.    This concentrated vortex filament is shed from the trailing 
edge at the position corresponding to 70 percent of the time increment, 
Results in Reference 2 show that this procedure gives a reasonable 
approximation of the shed wake. 

The grid of straight-line vortex filaments representing the 
shed and trailing vortex filaments can be truncated after a prescribed 
number of azimuthal increments.    Farther aft,   the wake is continued 
as a tip trailing vortex filament representing the roiled-up vortex 
sheet.    Although the computational program permits the use of a 
distorted wake,  the motions of the end points of each wake segment 
were computed using uniform inflow theory. 

In carrying out the solution,  boundary conditions are satisfied 
for AM equally spaced azimuth positions of the rotor at the midpoints 
of the V/f spanwise segments of a given blade.    The total bound vor- 
ticity or circulation around the airfoil for each of these {#*» A/A - N*A ) 
blade segment collocation positions is denoted by/'with a lower-case 
letter as a subscript (e.g., /^   or Z^.).    The integer subscripts 4  and * 
are used to specify successive blade segment collocation positions 
for the entire rotor disc running from the inboard to the outboard 
segments at the aft azimuth position and then to the inboard segment 
at the next azimuth position, etc. 

For a periodic problem,  the strength of each trailing or shed 
vortex filament can be expressed by a linear combination of the /;'* 
in the rotor disc as a consequence of the vorticity conservation laws. 
When the bound vorticity strengths in adjacent blade segments are /y 
and /},/ ,  the strength of the trailing vortex segment arising at their 
intersection must be /> -C*' •    The strength of the shed vortex fila- 
ment immediately aft of a given blade segment is equal to the differ- 
ence of the bound vorticities of the blade segment at the preceding 
and current azimuth positions.   Similar considerations can be used 
to find the strengths of all the vortex filaments in a wake represen- 
tation such as shown in the sketch on page 65. 

The strength of the trailing vortex segment produced by the 
rolling up of the vorticity deposited in the wake between azimuth 
positions ^„z and £4 is denoted by /^.    It is assumed that /^ is 
equal in magnitude to the largest of the bound vorticities ( A „ ; at 
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asimuth position ^ .    This amounts to assuming that all the trailing 
vorticity deposited in the wake outboard of the radial position of 
maximum bound vorticity is concentrated in the tip vortex. 

Each segment of the blade at each discrete azimuth position 
is represented by a continuous distribution of vorticity aligned in the 
radial direction and varying in intensity only in the chordwise direction. 
Using the notation of Reference 2 as indicated in the sketch below, the 
bound vorticity of a blade segment at collocation position (i) can be 
expressed by the dauert series, 

#f#) w [44«* j*>X4,A «*»•#]• (31) 
where 

«   •   - bcos 0. (32) 

>^l H 

REPIEKiTATIN OF IU0E SECTIOS IV CMOtMIIE IMMO VOITICITY »ItTIIMTIM 

The condition for no normal flow through the blade chord at 
the midspan of a particular blade segment can be expressed as follows: 

where 

Vk{») ' (-h* V,o^ *a9*,)k 

(33) 

(34) 
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and 

f/*A 

"-*(*)- Z ci.(x)n ■ (35) 
j't 

The symbol v^  denotes the velocity relative to the surface of the airfoil 
due to plunging motion (hk) and geometric angle of attack (^ ),while u^ 
is the normal velocity induced by the trailing and shed vortex filaments 
in the wake.    It is noted that the expression for o^ can be written in 
terms of the bound vorticity strengths because the strength of each 
wake vortex segment is a function of the /j».    The integral in Equa- 
tion (33) gives the induced velocity due to the bound vorticity.    An 
approximation for this induced velocity is used which should be rea- 
sonable at the midspan of the k.iM blade segment.    It is based on the 
assumption that the bound vorticity representing the k*M blade segment 
is extended to infinity in both directions.    This explains the use of 
the two-dimensional Biot-Savart law in the integral term. 

It is convenient to replace the chordwise variable« in Equa- 
tions (33),   (34),  and (35) by the expression defined in Equation (32). 
Then, the evaluation of the integral in Equation (33) gives the well- 
known result. 

(cos &-cosfi) 

(36) 

where the series in Equation (31) has been substituted for /^W,replacing 
9 by <p.    It is also possible to expand a% in a. cosine series which is written 
in the form 

"äW'Z fa*  +1,   K   C0Sf,e)n +2 fa *Z \ CosnO) r4 . (37) 

The following set of equations results from substituting Equa- 
tions (34),  (36), and (37) into Equation (33),  and from requiring that the 
coefficients of each harmonic cosine term be zero separately: 

S/tA MA 

j' I      J 4*1 

1 
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A relationship between the P» and A's is required before a solution 
can be found.    This is obtained by integrating the dauert series for 
the bound vorticity over the chord.giving the following expression for 
the total bound vorticity or circulation about blade segment k. 

rk "   ^k J   V/t (&) stn &d6 

Z7rhk [Ao* j ^ (39) 

Since the theoretical circulation and the theoretical lift-curve slope 
are not achieved in practice,  Equation (39) can be modified as follows; 

= 4* f' C4   A0*v •')., (40) 

where Cj,  jjirxn an empirical correction factor applied to the theoretical 
lift-curve slope.    The result of combining Equations (40) and (38) is 

where 

and 

J-> ,   J      ill   * 

**= (^ )k *" {-*> - v'**)k + *-{*% )k 

\* (^A ** (r*J - ^ ir'Jh* ■ 

(41) 

(42) 

(43) 

(44) 

Equation (41) represents a set of {WA) equations which are solved iter- 
atively for the /v*^ /j'j by the Gauss.-Seidel method.    In each iteration, 
the Q's for the different spanwise blade segments at a given azimuth 
angle (^) must be compared to find their maximum value /^. 

The definition of stall differs slightly from that used in Refer- 
ence 2.    It is assumed herein that the airfoil is stalled when the effective 
angle of attack &e is 

or 

Ck, 

■tan  Oe. %> 

-^>   ***{*-*„),     Vf<   O 
(45) 
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where <*„, ait, are arbitrary stall angles of attack for the airfoil section. 
For the conditions (45),  the circulation r is assumed to be 

or 

rk - rrbk A,k * (^- Cjm i>y,)   *** (rr-AM) (46) 

This treatment tends to limit the maximum value of r'k  attainable at 
each blade segment collocation position,  and prevents large,  unrealistic 
values of vorticity from being shed into the wake from sections which 
are above their assumed stalling angle of attack.    For the conditions 
(45),  the effective angle of attack ^ is 

'•'" <""i$\l ■ ,47) 

Once the set of equations for the ^s [i. e.,  Equation (41)] has 
been solved,  the strengths of the bound vortices of the blade segments 
are known for all collocation positions in the rotor disc.    Equation (38) 
can be used to compute the remaining coefficients (At, Aa) of the dauert 
expansions of the chordwise vorticity distributions at these positions. 
The time derivatives of the dauert coefficients for a given blade seg- 
ment are also required in the computations.   They are determined by 
assuming that all variables change periodically at steady flight con- 
ditions.    This assumption makes it possible to express the time deriv- 
atives of the dauert coefficients for a given blade segment at a par- 
ticular azimuth position in terms of the values of the dauert coefficients 
for the blade segment at all of the /W equally spaced azimuth positions 
which are used in the computations. 

The linearized Bernoulli equation for unsteady flow leads to 
an expression for the chordwise variation in pressure difference on a 
blade segment as it moves through collocation position (*-) in terms of 
the dauert coefficients and time rate of change of the dauert coeffi- 
cients for the blade segment at position (*.),   This pressure distribution 
is used to compute the lift and pitching moment per unit span as a func- 
tion of the values and time derivatives of the dauert coefficients of a 
blade segment at position («).    Empirical correction factors are also 
introduced in these expressions to allow for the fact that the actual 
circulation can be less than the theoretical value.    Below stall,  the 
expressions for lift and pitching moment (about the midchord) per unit 
span of a blade segment at collocation position (t) can then be written 
in the form 

Jk - h/, V, fa A0 * rr*,) * *-/;>£ (3*a *At*~ **) |   . (48) 
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Above stall,  the lift and pitching moment are computed in the manner 
described in Reference 2. 

The lift and moment loadings obtained from Equations (48) and 
(49) are those resulting from the given geometric angles of attack ("**)» 
rates of change of geometric angle of attack (aek ), and plunging veloc- 
ities (hk) entering in Equations (38) and (42).    These quantities must be 
defined in terms of the geometry and motion of the rotor system. 

The shaft-oriented reference system used in the analysis and 
the deflected blade axis are indicated schematically in Figures 2 and 3, 
respectively.    The following expressions for the velocity components 
used in the analysis are readily derived by reference to these figures. 

V,   -  fir + (Vf cos ocs ) sin ^ (50) 

=   component of relative velocity perpendicular 
to the shaft and to the blade axis. 

h   =    VfSwa:s cos (—^j + Vf cos a, cos fstn (^j+L cos(~£j 

=   component of velocity perpendicular to ^   and 
the blade axis (i. e.,  velocity of airfoil relative 
to air excluding induced velocity). 

By making use of small-angle approximations, 

h   =   Vf st,nacrs +  Yr cos acs cos & —21  ^ hm . (51) 

Forward velocity is denoted by l£ ,   shaft angle by o^.and the distance 
of the midchord axis above the reference plane byA^. 

Below stall,  the drag loading at the collocation position 
in the disc can be written 

dk * (N \ Pbk (% Y;' W'X * (^ ' (52) 

where ^   is a profile drag coefficient.    The profile drag coefficients 
are expressed as functions of the geometric angle of attack and Mach 
number,  and are based on the data contained in Reference 5 for the 
NACA 0015 airfoil section used in the UH-1A rotor blades. 
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Above stall,  the drag is simply 

(53) 

The expressions used to evaluate rotor torque <?,   control 
moment M ,  side force y, and longitudinal force x were based on the 
analysis of Reference 3.    For a teetering rotor,  under the assump- 
tions that the rotor blade is mass balanced about the elastic axis, 
and excluding the dynamic effects of the control system,   the expres- 
sions of Reference 3 can be written 

2Ce (54) 

(55) 

y-    Diti-irfy-mt.iAtHj)--^^! Lc (56) 

X - -Dn ■2aZ*,c (ßt^)- {-^£, -A f^^T«^ (*th;) j •        (57) 

The quantities 3,c , Cfi , J>tc  , DIS ,  1IS , and (/*?)„  are the indicated first 
harmonic cosine or sine components Qi3,C , D , ^i and Mp,  while C0 and 
/,, are the steady components of C and i.   The expressions for 8, C, D , 
Ztand Mp at azimuth position j^are: 

»4* f (ri(r)är)4 ^ - / U(r)dr)ä 
o Ja 

Ci n J (rd(r)dr)A U-- f (t(r)dr)t 

where ^7-is the aerodynamic pitching moment about the elastic axis. 
The first harmonic cosine component of B,  for example,  is determined 
from the calculated values of £ at NA equally spaced azimuth positions. 
Denoting 

y4S 
A'/« 

TT and 01 -   Br   - fit , 
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(•^-7,2.  ' •  ' MAj, 3IC     is given by 

BK ' illl   ZACOS'P*.- NA 
Tt'/ 

The steady component of C is 
.     MA~ 

^ *  177 27   CA NA 
**f 

The quantities {AfMj ),  {ß, hj ),   etc., are given in Equations (7) and (8). 
Also, 

r-c,   ■ I'""'* dr • 

dr 

"to*     " J      ^^h.d''  f 
J        "o J 

where fy, (dT/dr),&nd {dTz/dr) are as defined in Appendix II. 
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APPENDIX II 

BLADE PARAMETERS USED IN COMPUTATIONS 

GEOMETRIC PROPERTIES 

The blade planform considered in the computations is shown 
in the sketch below.   The blade was assumed to possess a preconing 
angle of 3.0 degrees and a built-in twist (0g) varying linearly from 
zero at r = 23.0 inches to -11. 0 degrees at the blade tip. 

I0T0I INAFT 

8 IA      lit in 

—    —    w 

28 
58 

WM« I1A0E PUNFOtM 

IUDE PITCH AXIS 

EUtTIC AXIS 

MIOCHOW AXIS 

"cawrKfions 
b ■ 0.1» ft 

ASSUMED LOCATION OF SLAOE FiTCNINS AND EUSTIC AXES 

MODES AND FREQUENCIES OF ROTOR BLADE 

Uncoupled flapwise and chordwise bending modes and fre- 
quencies for the rotating blade were based on the computations using 
the associated matrix method of Reference 4.    The torsional frequencies 
were obtained from a Holzer-type computation.    The blade frequencies 
were assumed to be identical for the three flight conditions analyzed, since 
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the rotational speed of the rotor was invariant for these cases.   As in 
Reference 1,  the frequency and mode shape of the third symmetric 
bending mode were not computed,and the deflections in this mode were 
assumed to be zero in the numerical computations.    The rotor blade 
frequencies are summarized in the table below. 

Table X 

MODAL FREQUENCIES OF ROTOR BLADE 

FREQUENCY 

\ 
MODE rad/ttc iX 

V l«t .SYMMETRIC FLAPWISE BENDING sa.s 1.18 

«v 2nd SYMMETRIC FLAPWISE BENDING 112.8 3. «3 

h6 
3rd SYMMETRIC FLAPWISE BENDING — ~ 

V I«* SYMMETRIC TORSION IG8.8 l.ll 

«v 2nd SYMMETRIC TORSION W0.9 18.60 

"V I«* SYMMETRIC CHORDWISE BENDING 39.1 1.19 

%• 
2nd SYMMETRIC CHORDWISE BENDING 236.» 7.19 

V I«* ANTISYMMETRIC FLAPWISE BENDING 96.i> 2.96 

V 2nd ANTISYMMETRIC FLAPWISE BENDING 171.6 5.28 

\- 
1»* ANTISYMMETRIC TORSION 168.8 5.16 

%- 
2nd ANTISYMMETRIC TORSION »HO. 9 13.60 

%,- I«* ANTISYM4ETRIC CHORDWISE BENDING 39.1 1.19 

""3- 
2nd ANTISYIMETRIC CHORDWISE BENDING 236.it 7.19 

COEFFICIENTS IN EQUATIONS OF MOTION 

The coefficients in the equations of motion neglecting the 
chordwise deformations of the blade are identical to those in Refer- 
ence 1.    The assumptions,  listed below, which were made in the 
computations encompass those of Reference 1,  and they were 
extended to include the chordwise deformations of the blade. 

1.     The relatively small gyroscopic coupling terms 
were neglected. 
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2. The elastic and pitch axes are assumed to be 
coincident and to intersect with the shaft axis. 

3. The blade is assumed to be mass balanced 
about the elastic axis. 

4. It is assumed that there is no elastic coupling between: 

a. the flapwise bending and torsion modes 

b. the chordwise bending and torsion modes 

c. the flapwise bending and chordwise bending 
modes. 

Under these assumptions, the expressions for the mass,  centrifugal 
force,  and stiffness coefficients take the form 

V;'n'Vi "4 *H - 

i  i, Je       I. 
M*M.    ■    /   tu   Mtdr , 

* /UK 

i   i. it i.      i  i • 

r* 
Mkh  ■    /   nth.*'     '' Jz / ' 

* * Jo J 

o'j e'j        J6 j 
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^, 

where mis the mass per foot, dlx/dxis the moment of inertia per 
foot about the elastic axis due to the horizontal distribution of mass, 
and dljdxis the moment of inertia per foot about the elastic axis 
due to the vertical distribution of mass.    The vertical distribution 
of mass is neglected in treating the bending modes except for the 
contribution of the root fitting. 

The numerical values of the nonzero coefficients which were 
used in the computations are summarized below. 

Table XI 
HASS, CEKTRIFUGAL FORCE, AND STIFFNESS COEFFICIENTS 

FOR TEETERING AND BENDING MODES 

MODE 1b-MC2/ft 
^o*' 1' ^0" 1 
1b-MC2/ft 

Tll|ll|/TH,H, 

1b-MC2/ft 
Vl^Ml 

lb/ft 

h, - TEETERING 1.972 2.8H7 - 1.972 0 

(13 - I*1 ANTISYMMETRIC FLAPWISE BENDING I.S59 -0.891 -10.610 1143.0 

h5 - 2nd ANTISYMMETRIC FLAPWISE BENDING 1.327 0.1*70 -27.580 9286.0 

H, - \%i ANTISYMMETRIC CHORDWISE BENDING 1.607 2.415 - 0.388 2040.0 

H, - 2nd ANTISYMMETRIC CHORDWISE BENDING 1.769 -I.»95 -12.460 85SI0.0 

h2 - 1** SYMMETRIC FLAPWISE BENDING 1.553 2.2M - 2.107 57.5 

h4 - 2nd SYMMETRIC FLAPWISE BENDING 1.060 -0.780 -10.190 2450.0 

H2 - )** SYMMETRIC CHORDWISE BENDING 1.607 2.«IS - 0.388 2040.0 

HH - 2nd SYMMETRIC CHORDWISE BENDING 1.769 -1.495 -12.460 85310.0 
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Table XII 

HASS, CENTRIFUGAL FORCE,  AND STIFFNESS COEFFICIENTS 

FOR TORSION AND CONTROL MODES 

\ 9, 

Ib-ft sec2 Ib-ft »ec2 lb-ft/rad 

^, - !'*  AMT {SYMMETRIC TORSIOK 

^2 " '^ SYMMETRIC TORSIOH   i 

^8 - 2nd ANTISYMMETRIC TORSIOH 

^ - 2nd SYIMETRIC TORSIOH   1 

0.2179 

0.2179 

0.2466 

0.2466 

-0.2294 

-0.2294 

-1.646 

-1.646 

5961 

5961 

46156 

46156 

M0C     =   0.2965Ib-ft-sec2              T& G       =-0.2965 lb-ft-tec2 

Ma P     =   0.2965                                  T- -       = -0.2965 e'2c2                                                      ,92c2 

MÖ3Ci    = -0.1373                                TÖ>3C)     =   0.1373 

M^C2   =-0.1373                                T©^     =   0.1373 

THE STRUCTURAL DAMPIHG COEFFICIEHT IS ASSUMED TO BE g = 0.03 IN ALL 
BEHDIHQ AND TORSION MODES. 
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APPENDIX III 

EXPRESSIONS FOR ELEMENTS IN (E] MATRIX 

In estimating the increments in the generalised aerodynamic 
forces from one iteration to the next of the computational procedure, 
the following expressions are used for the quasi-steady lift and pitching 
moment loadings: 

""*(&(<'>'-**>'&')'ib*-*')}. (58) 

yri (about mdckord) - ir^h'w'a -V,ht - j; >* J • (59) 

where y,, <x, ä, and ^ are given by Equations (50).   (15), (16), and (17), 
respectively.    The drag,  on the other hand,  can be written approxi- 
mately in terms of a drag coefficient slope as 

^ * />y,*/>Cd  ct. (60) 

where ^ is a mean sectional drag coefficient slope assumed, for a 
rough estimate,  to be independent of r and^.    Q^ can be evaluated 
on the basis of finite wing theory as being approximately equal to 
the overall lift coefficient ^ , written here as W^/pViJr'hdr,   The 
resultant value of 4*    for the flight conditions considered was 0.615. 

The incremental generalized forces due to these loadings are 
computed by a procedure similar to that used in Reference 7 and can 
be expressed in the form 

where only terms independent of/^ are retained.    The symbol ä   • 
preceding the symbol for a given quantity is again used to denote the 
change in that quantity from the (<-/ )**  to the (0<A   approximation of 
the iterative solution. 

Only one-half of the modes of the two-bladed teetering rotor 
need be included in the summation in Equation (61) because the terms 
involving the other modes are zero from symmetry considerations; 
i. e., the only £■  modes to be included in this group are those having 
the same symmetry as the £,- mode. 
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In the case of periodic motion,   each variable in Equation (61) 
can be expressed in the form of Equation (1),leading to the following 
equations for the harmonic coefficients of /\   Gq 

These equations are combineu into the following matrix form for con- 
venience in the computer solution: 

^ [/Vn. I)] . - [£(I. J. n)] [/W /)] • (64) 

In this expression, [/i'",/)]  is the column matrix which lists the harmonic 
cosine and sine coefficients of the root shear and the generalized coor- 
dinates representing the blade motions.    [The forms for even and odd n 
are given explicitly in Equations (7) and (8)]. 

The form of the ZZ-by-ZZ [E] matrix is indicated below by 
writing the expressions for typical terms in the submatrices obtained 
by partitioning.    In each matrix,  the first and ninth columns are zero 
because the root shears do not appear in Equations (62) and (63).    Also, 
the seventh,   eighth,  fifteenth,and sixteenth rows are zero since the 
corresponding equations are constraint equations rather than an expres- 
sion of the equilibrium of generalized forces in the control modes. 
Moreover,  the quasi-steady generalized forces in the vertical and 
torsion modes are independent of the generalized coordinates in the 
inplane modes.    The quasi-steady generalized forces in the inplane 
modes are coupled by steady terms only to the torsion and control 
modes, as can be seen from Equation (60). 

When the transmitted inplane shears are not being suppressed, 
the inplane generalized coordinates are essentially calculated after the 
generalized coordinates in the bending,  torsion,and control modes. 
Thus,  it is unnecessary to provide the ^^    elements,and the com- 
puter program does not do so.    When the transmitted inplane shears 
are suppressed,  though,  the inplane generalized coordinates must be 
calculated simultaneously with the others.    The Ah 

provided then. % elements are 
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Expressions are given below for the A coefficients in terms 
of the blade parameters.    These coefficients art automatically calcu- 
lated in the computer program. 
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APPENDIX IV 

PROCEDURES USED FOR SOLUTIONS AT FLIGHT CONDITTQN DN67A 

The procedures for using iteration factors and improved initiai 
conditions in obtaining solutions can be clarified by examining the manner 
in which the va.ious cases at Flight Condition DN67A (i. e. , /* = 0. 259) 
were treated. 

CASE 1  - CONVENTIONAL CONTROL (RUNS E2A TO E2C) 

This was the basic case for this flight condition.    For initial 
conditions,  no dynamic blade response was assumed except for an 
estimate of the first harmonic flapping.    Convergence was achieved in 
eight iterations with all iteration factors $e and $x equal to 1.0.    The 
results checked closely with Run B-6 of Reference 1. 

CASE 2 - PITCH CONTROL AT SECOND AND FOURTH HARMONICS 
(RUNS E4A TO E4E)  

In this case,  the two largest transmitted vertical shears (the 
second and fourth harmonics) were eliminated.    For initial conditions, 
the converged generalized forces and coordinates from Case 1 (Run E2C) 
were used.    Fourteen iterations in five separate runs were necessary to 
achieve convergence.    The modes which caused the most difficulty were 
the second antisymmetric bending mode and all antisymmetric and sym- 
metric torsion modes.   $&  values of 0.5 in these modes led to conver- 
gence.    The torsional response in the first antisymmetric and symmetric 
torsion modes are presented in Figures 10 and 11,  respectively.   As 
compared with the torsional response to conventional control,  it can 
be seen that the response is much greater here,   especially in the sym- 
metric mode.    Moreover,  the angles involved are quite large and rapidly 
fluctuating and, thus, have a profound effect on the aerodynamic loading. 
This is a principal reason, it is believed, that convergence is so difficult 
to attain. 

CASE 3 - PITCH CONTROL AT ALL EVEN HARMONICS (RUNS E3A 
TO E3E)  

In this case, all the higher harmonic transmitted vertical 
shears (i. e., the second through the twelfth) were eliminated.   Initial 
conditions were the converged generalized forces and coordinates from 
Case 2 (Run E4E).    Fourteen iterations in five separate runs were again 
needed.    Difficulty was encountered chiefly in the two symmetric torsion 
modes,but £, values of 0*75 were adequate. 
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CASE 4 - PITCH CONTROL AT THIRD AND SEVENTH HARMONICS 
(RUNS E6A TO KhC)  

Here,  the two largest transmitted inplane shears that can be 
suppressed with root pitch control (the third and seventh harmonics) 
were eliminated.   Initial conditions for the generalized forces and 
coordinates were taken again from Case 1 (Run E2C).    Nine iterations 
were necessary in three runs.    There was very little difficulty with 
the symmetric modes, but the antisymmetric second bending and both 
torsion modes converged slowly.    ifx values of 0. 5 and f& values of 
0. 75 in these modes were used successfully.    The resulting first 
torsional mode responses are also given in Figures 10 and ] 1. 
From these results, it can be seen that the antisymmetric torsional 
response is quite different from the corresponding response to con- 
ventional control and is likely to be a source of slow convergence. 

CASE 5 - PITCH CONTROL AT ALL ODD HARMONICS (RUNS E7A 
TüTTÜf   

In this case, all the higher harmonic transmitted inplane shears 
that can be suppressed with root pitch control (the third through totarintti) 
were eliminated.   Case 4 (Run E6C) was used for the initial conditions 
on the generalized forces and coordinates.   Eleven iterations in three 
runs were required.   The symmetric modes were rapidly convergent, 
and fe  and $x values of 0. 75 permitted convergence of the antisymmetric 
second bending and second torsion modes. 

CASE 6 - PITCH CONTROL AT SECOND,  THIRD,  FOURTH,AND 
SEVENTH HARMONICS (RUNS E8A TO-EBBT  

Here,  the two largest transmitted vertical shears (the second 
and fourth harmonics) and the two largest transmitted inplane shears 
that can be suppressed by root pitch control (the third and seventh 
harmonics) were eliminated.    Initial conditions for the generalized 
forces and coordinates were found from Case 2 (Run E4E).   Sixteen 
iterations were necessary in four runs.   Symmetric and antisymmetric 
modes were slowly converging; namely,   both torsion modes of the 
former and the first and second bending,  and both torsion modes of 
the latter.    On the basis of indications from Run E8A,   several of the 
p were changed from unity in an attempt to improve the rate of con- 
vergence.    Using these values and the results of E8A for initial con- 
ditions, four additional iterations wee«, run a» E8B>  bat they actually 
indicated a slow divergence.    The.^ were, therefore,   reset to unity, 
and the results of E8A were again used for initial conditions.    A 
successful iteration was thus resumed,with convergence being 
attained ultimately using $x values of 0. 5 in all modes.    The con- 
verged torsional response in the first symmetric mode is close in 
phase, if not in magnitude,  to Case 2 (see Figure 11).    This led,  in 
part,  to the more rapid convergence of this mode than of the first 
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antisymmetric torsional mode,   the response of which is significantly 
different in character from Case 2 (see Figure 10).    Also,  here,  both 
even and odd harmonics are being controlled and fairly strong inter- 
harmonic aerodynamic coupling (of order/«) exists between adjacent 
harmonics. 

At the other flight conditions,  the various cases were iterated 
in the same general manner with some differences in choice of ^ and & 
as required.    No fixed rules can be given at this time for guaranteeing 
in advance the success of a given iteration.    The judgment of the user 
must be inserted frequently into the iteration. 
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